TheNeuralBit commented on a change in pull request #15827:
URL: https://github.com/apache/beam/pull/15827#discussion_r758802696
##########
File path: sdks/python/apache_beam/dataframe/frames.py
##########
@@ -1277,6 +1277,90 @@ def align(self, other, join, axis, level, method,
**kwargs):
requires_partition_by=partitionings.Arbitrary(),
preserves_partition_by=partitionings.Singleton())
+ @frame_base.with_docs_from(pd.Series)
+ @frame_base.args_to_kwargs(pd.Series)
+ @frame_base.populate_defaults(pd.Series)
+ def idxmin(self, **kwargs):
+ skipna = kwargs.get('skipna', True)
+
+ def compute_idxmin(s):
+ min_index = s.idxmin(**kwargs)
+ if pd.isna(min_index):
+ return s
+ else:
+ return s.loc[[min_index]]
+
+ # Avoids empty Series error when evaluating proxy
+ index_dtype = self._expr.proxy().index.dtype
+ index = pd.Index([], dtype=index_dtype)
+ proxy = self._expr.proxy().copy()
+ proxy.index = index
+ proxy = proxy.append(
+ pd.Series([np.inf], index=np.asarray(['0']).astype(proxy.index.dtype)))
+
+ if not skipna:
+ proxy = proxy.append(
+ pd.Series([None],
+ index=np.asarray(['1']).astype(proxy.index.dtype)).astype(
+ proxy.dtype))
+
+ idx_min = expressions.ComputedExpression(
+ 'idx_min',
+ compute_idxmin, [self._expr],
+ proxy=proxy,
+ requires_partition_by=partitionings.Index(),
+ preserves_partition_by=partitionings.Singleton())
+
+ with expressions.allow_non_parallel_operations(True):
+ return frame_base.DeferredFrame.wrap(
+ expressions.ComputedExpression(
+ 'idxmin_combine',
+ lambda s: s.idxmin(**kwargs), [idx_min],
+ requires_partition_by=partitionings.Singleton(),
+ preserves_partition_by=partitionings.Singleton()))
+
+ @frame_base.with_docs_from(pd.Series)
+ @frame_base.args_to_kwargs(pd.Series)
+ @frame_base.populate_defaults(pd.Series)
+ def idxmax(self, **kwargs):
+ skipna = kwargs.get('skipna', True)
+
+ def compute_idxmax(s):
+ max_index = s.idxmax(**kwargs)
+ if pd.isna(max_index):
+ return s
+ else:
+ return s.loc[[max_index]]
+
+ # Avoids empty Series error when evaluating proxy
+ index_dtype = self._expr.proxy().index.dtype
+ index = pd.Index([], dtype=index_dtype)
+ proxy = self._expr.proxy().copy()
+ proxy.index = index
+ proxy = proxy.append(
+ pd.Series([-np.inf],
index=np.asarray(['0']).astype(proxy.index.dtype)))
Review comment:
Does the ValueError occur when generating the proxy for idxmax_combine?
I think it might be a better approach to just generate the proxy for the
idxmax_combine expression too
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]