DamonZhao-sfu commented on issue #588:
URL: 
https://github.com/apache/datafusion-comet/issues/588#issuecomment-2239746176

   > @DamonZhao-sfu could you also provide the configs you used for the Spark 
run? I am seeing most queries running faster with Comet (but at 100GB) and 
would like to try and reproduce your results.
   > 
   > 
![tpch_queries_speedup](https://private-user-images.githubusercontent.com/934084/350421130-964f56bc-8fa7-4f60-80bb-4285b1c18a29.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3MjE0MTA3NjEsIm5iZiI6MTcyMTQxMDQ2MSwicGF0aCI6Ii85MzQwODQvMzUwNDIxMTMwLTk2NGY1NmJjLThmYTctNGY2MC04MGJiLTQyODViMWMxOGEyOS5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjQwNzE5JTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI0MDcxOVQxNzM0MjFaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT02NGYzOWY0OWQ5MThkZmUzYjA0MzIzY2RiYjgzM2JjNGRmOWQ5ZTdjNjZlMTA4ZDM2Y2FjNDFjMzAxZjYzNmM5JlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCZhY3Rvcl9pZD0wJmtleV9pZD0wJnJlcG9faWQ9MCJ9.WSN2A7ttO4pU6H-L8UMQUg2wHXRZuBLuOakXricL5Ik)
   
   here's my config:
   ```
   export 
COMET_JAR=/localhdd/hza214/datafusion-comet/spark/target/comet-spark-spark3.4_2.12-0.1.0-SNAPSHOT.jar
   export SPARK_LOCAL_DIRS=/mnt/smartssd_0n/hza214/sparktmp
   INFLUXDB_ENDPOINT=`hostname`
   cat tpcds_parquet.scala | 
/localhdd/hza214/spark-3.4/spark-3.4.2-bin-hadoop3/bin/spark-shell \
       --jars $COMET_JAR \
       --conf spark.comet.xxhash64.enabled=true\
       --conf spark.driver.extraClassPath=$COMET_JAR \
       --conf spark.executor.extraClassPath=$COMET_JAR \
       --conf spark.comet.batchSize=8192 \
       --conf spark.sql.autoBroadcastJoinThreshold=-1\
       --conf spark.sql.extensions=org.apache.comet.CometSparkSessionExtensions 
\
       --conf spark.comet.enabled=true \
       --conf spark.comet.exec.enabled=true \
       --conf spark.comet.exec.all.enabled=true \
       --conf spark.comet.parquet.io.enabled=false \
       --conf spark.comet.cast.allowIncompatible=true \
       --conf spark.comet.explainFallback.enabled=true\
       --conf spark.memory.offHeap.enabled=true \
       --conf spark.sql.adaptive.coalescePartitions.enabled=false\
       --conf 
spark.shuffle.manager=org.apache.spark.sql.comet.execution.shuffle.CometShuffleManager\
       --conf spark.comet.exec.shuffle.enabled=true\
       --conf spark.comet.exec.shuffle.mode=native\
       --conf spark.memory.offHeap.size=50g \
       --conf spark.shuffle.file.buffer=128k\
       --conf spark.local.dir=/mnt/smartssd_0n/hza214/sparktmp \
       --executor-cores 48 \
       --driver-memory 10g \
       --executor-memory 140g \
   ```
   
   But later I was advised by others that I should set a lower executor core to 
let more executors running in parallel in one node.
   I'm using 4 node clusters each with 48 core, 196GB memory and ssd as 
localfile disk.  I have not tested with 100GB sizes yet. Let me reproduce it. 
Also, would you like to share your configs?  @andygrove 


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org
For additional commands, e-mail: github-h...@datafusion.apache.org

Reply via email to