Kontinuation opened a new issue, #886:
URL: https://github.com/apache/datafusion-comet/issues/886

   ### Describe the bug
   
   We easily run into this problem when running queries with 
`spark.comet.exec.shuffle.mode=jvm`:
   
   ```
   org.apache.spark.memory.SparkOutOfMemoryError: Unable to acquire 67108848 
bytes of memory, got 65700208 bytes. Available: 65700208
   
   org.apache.spark.memory.SparkOutOfMemoryError: Unable to acquire 67108848 
bytes of memory, got 65700208 bytes. Available: 65700208
        at 
org.apache.spark.shuffle.comet.CometShuffleMemoryAllocator.allocate(CometShuffleMemoryAllocator.java:132)
        at 
org.apache.spark.shuffle.comet.CometShuffleMemoryAllocator.allocatePage(CometShuffleMemoryAllocator.java:119)
        at 
org.apache.spark.sql.comet.execution.shuffle.SpillWriter.initialCurrentPage(SpillWriter.java:158)
        at 
org.apache.spark.shuffle.sort.CometShuffleExternalSorter.insertRecord(CometShuffleExternalSorter.java:368)
        at 
org.apache.spark.sql.comet.execution.shuffle.CometUnsafeShuffleWriter.insertRecordIntoSorter(CometUnsafeShuffleWriter.java:278)
        at 
org.apache.spark.sql.comet.execution.shuffle.CometUnsafeShuffleWriter.write(CometUnsafeShuffleWriter.java:206)
        at 
org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59)
        at 
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:101)
        at 
org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
        at 
org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:161)
        at org.apache.spark.scheduler.Task.run(Task.scala:139)
        at 
org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:554)
        at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1529)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:557)
        at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown 
Source)
        at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown 
Source)
        at java.base/java.lang.Thread.run(Unknown Source)
   
   ```
   
   We've observed this problem not only on our own workloads but also on TPC-H 
benchmarks. The above-mentioned exception happens when running TPC-H query 5 on 
parquet files with scale factor = 1000.
   
   We've tried to disable the comet shuffle manager and use Spark's own shuffle 
exchange, all TPC-H queries could finish successfully.
   
   ### Steps to reproduce
   
   Running TPC-H query 5 on a Spark cluster. The detailed environment and spark 
configurations are listed in **Additional context**.
   
   ### Expected behavior
   
   All TPC-H queries should finish successfully.
   
   ### Additional context
   
   The problem was produced on a self-deployed K8S Spark cluster on AWS.
   
   * Driver/executor instance type: r7i.2xlarge (8 vCPUs, 64GB memory)
   * Executor pod resource limit: 6 vCPUs, 48GB memory. We reserved some 
resources for some reason
   * Number of executor instances: 48
   * Spark version: 3.4.0
   * Java version: 17
   * Comet version: commit 
https://github.com/apache/datafusion-comet/commit/9205f0d1913933f2cc8767c02a7728a4e318dd49
   
   Here are relevant spark configurations:
   
   ```
   spark.executor.cores 6
   spark.executor.memory 30719m
   # Reserve native memory for comet, python and other stuff
   spark.executor.memoryOverheadFactor 0.6
   # Each executor core gets 1.2 GB memory for comet, all 6 executors will use 
7.4GB memory.
   # I know this is too small for comet, but it should not prevent the query 
from finishing
   spark.comet.memory.overhead.factor 0.04
   
   spark.sql.extensions org.apache.comet.CometSparkSessionExtensions
   spark.comet.enabled true
   spark.comet.exec.enabled true
   spark.comet.exec.all.enabled true
   spark.comet.exec.shuffle.enabled true
   spark.comet.exec.shuffle.mode jvm
   spark.shuffle.manager 
org.apache.spark.sql.comet.execution.shuffle.CometShuffleManager
   ```
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to