pmcgleenon commented on code in PR #33:
URL: https://github.com/apache/datafusion-site/pull/33#discussion_r1846924151


##########
_posts/2024-11-18-datafusion-fastest-single-node-parquet-clickbench.md:
##########
@@ -0,0 +1,347 @@
+---
+layout: post
+title: "Apache DataFusion is now the fastest single node engine for querying 
Apache Parquet files"
+date: "2024-11-18 00:00:00"
+author: Andrew Lamb, Staff Engineer at InfluxData
+categories: [core, performance]
+---
+
+<!--
+{% comment %}
+Licensed to the Apache Software Foundation (ASF) under one or more
+contributor license agreements.  See the NOTICE file distributed with
+this work for additional information regarding copyright ownership.
+The ASF licenses this file to you under the Apache License, Version 2.0
+(the "License"); you may not use this file except in compliance with
+the License.  You may obtain a copy of the License at
+
+http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+{% endcomment %}
+-->
+
+I am extremely excited to announce that [Apache DataFusion] [43.0.0]  is the
+fastest engine for querying Apache Parquet files in [ClickBench]. It is faster
+than [DuckDB], [chDB] and [Clickhouse] using the same hardware. It also marks
+the first time a [Rust] based engine holds the top spot, which has previously
+been held by traditional C/C++ based engines.
+
+[Apache DataFusion]: https://datafusion.apache.org/
+[43.0.0]: https://crates.io/crates/datafusion
+[ClickBench]: https://benchmark.clickhouse.com/
+[DuckDB]: https://duckdb.org/
+[chDB]: https://clickhouse.com/chdb
+[Clickhouse]: https://clickhouse.com/ 
+[Rust]: https://www.rust-lang.org/
+
+
+<img
+src="{{ site.baseurl }}/img/2x_bgwhite_original.png"
+width="80%"
+class="img-responsive"
+alt="Apache DataFusion Logo"
+/>
+
+<img
+src="{{ site.baseurl }}/img/clickbench-datafusion-43/perf.png"
+width="100%"
+class="img-responsive"
+alt="ClickBench performance for DataFusion 43.0.0"
+/>
+
+**Figure 1**: 2024-11-16 [ClickBench Results] for the  ‘hot’[^1] run against 
the
+partitioned 14 GB Parquet dataset (100 files, each ~140MB) on a `c6a.4xlarge` 
(16
+CPU / 32 GB  RAM) VM. Measurements are relative (`1.x`) to results using
+different hardware.
+
+[ClickBench Results]: 
https://benchmark.clickhouse.com/#eyJzeXN0ZW0iOnsiQWxsb3lEQiI6ZmFsc2UsIkFsbG95REIgKHR1bmVkKSI6ZmFsc2UsIkF0aGVuYSAocGFydGl0aW9uZWQpIjpmYWxzZSwiQXRoZW5hIChzaW5nbGUpIjpmYWxzZSwiQXVyb3JhIGZvciBNeVNRTCI6ZmFsc2UsIkF1cm9yYSBmb3IgUG9zdGdyZVNRTCI6ZmFsc2UsIkJ5Q29uaXR5IjpmYWxzZSwiQnl0ZUhvdXNlIjpmYWxzZSwiY2hEQiAoRGF0YUZyYW1lKSI6ZmFsc2UsImNoREIgKFBhcnF1ZXQsIHBhcnRpdGlvbmVkKSI6dHJ1ZSwiY2hEQiI6ZmFsc2UsIkNpdHVzIjpmYWxzZSwiQ2xpY2tIb3VzZSBDbG91ZCAoYXdzKSI6ZmFsc2UsIkNsaWNrSG91c2UgQ2xvdWQgKGF6dXJlKSI6ZmFsc2UsIkNsaWNrSG91c2UgQ2xvdWQgKGdjcCkiOmZhbHNlLCJDbGlja0hvdXNlIChkYXRhIGxha2UsIHBhcnRpdGlvbmVkKSI6ZmFsc2UsIkNsaWNrSG91c2UgKGRhdGEgbGFrZSwgc2luZ2xlKSI6ZmFsc2UsIkNsaWNrSG91c2UgKFBhcnF1ZXQsIHBhcnRpdGlvbmVkKSI6dHJ1ZSwiQ2xpY2tIb3VzZSAoUGFycXVldCwgc2luZ2xlKSI6ZmFsc2UsIkNsaWNrSG91c2UgKHdlYikiOmZhbHNlLCJDbGlja0hvdXNlIjpmYWxzZSwiQ2xpY2tIb3VzZSAodHVuZWQpIjpmYWxzZSwiQ2xpY2tIb3VzZSAodHVuZWQsIG1lbW9yeSkiOmZhbHNlLCJDbG91ZGJlcnJ5IjpmYWxzZSwiQ3JhdGVEQiI6ZmFsc2UsIkNydW5jaHkgQnJpZGdlIGZvciBBbmFseXRpY
 
3MgKFBhcnF1ZXQpIjpmYWxzZSwiRGF0YWJlbmQiOmZhbHNlLCJEYXRhRnVzaW9uIChQYXJxdWV0LCBwYXJ0aXRpb25lZCkiOnRydWUsIkRhdGFGdXNpb24gKFBhcnF1ZXQsIHNpbmdsZSkiOmZhbHNlLCJBcGFjaGUgRG9yaXMiOmZhbHNlLCJEcnVpZCI6ZmFsc2UsIkR1Y2tEQiAoRGF0YUZyYW1lKSI6ZmFsc2UsIkR1Y2tEQiAoUGFycXVldCwgcGFydGl0aW9uZWQpIjp0cnVlLCJEdWNrREIiOmZhbHNlLCJFbGFzdGljc2VhcmNoIjpmYWxzZSwiRWxhc3RpY3NlYXJjaCAodHVuZWQpIjpmYWxzZSwiR2xhcmVEQiI6ZmFsc2UsIkdyZWVucGx1bSI6ZmFsc2UsIkhlYXZ5QUkiOmZhbHNlLCJIeWRyYSI6ZmFsc2UsIkluZm9icmlnaHQiOmZhbHNlLCJLaW5ldGljYSI6ZmFsc2UsIk1hcmlhREIgQ29sdW1uU3RvcmUiOmZhbHNlLCJNYXJpYURCIjpmYWxzZSwiTW9uZXREQiI6ZmFsc2UsIk1vbmdvREIiOmZhbHNlLCJNb3RoZXJEdWNrIjpmYWxzZSwiTXlTUUwgKE15SVNBTSkiOmZhbHNlLCJNeVNRTCI6ZmFsc2UsIk94bGEiOmZhbHNlLCJQYW5kYXMgKERhdGFGcmFtZSkiOmZhbHNlLCJQYXJhZGVEQiAoUGFycXVldCwgcGFydGl0aW9uZWQpIjp0cnVlLCJQYXJhZGVEQiAoUGFycXVldCwgc2luZ2xlKSI6ZmFsc2UsIlBpbm90IjpmYWxzZSwiUG9sYXJzIChEYXRhRnJhbWUpIjpmYWxzZSwiUG9zdGdyZVNRTCAodHVuZWQpIjpmYWxzZSwiUG9zdGdyZVNRTCI6ZmFsc2UsIlF1ZXN0REIgKHBhcnRpdGlvbmVkKSI6ZmFsc2UsIlF1ZX
 
N0REIiOmZhbHNlLCJSZWRzaGlmdCI6ZmFsc2UsIlNpbmdsZVN0b3JlIjpmYWxzZSwiU25vd2ZsYWtlIjpmYWxzZSwiU1FMaXRlIjpmYWxzZSwiU3RhclJvY2tzIjpmYWxzZSwiVGFibGVzcGFjZSI6ZmFsc2UsIlRlbWJvIE9MQVAgKGNvbHVtbmFyKSI6ZmFsc2UsIlRpbWVzY2FsZURCIChubyBjb2x1bW5zdG9yZSkiOmZhbHNlLCJUaW1lc2NhbGVEQiI6ZmFsc2UsIlRpbnliaXJkIChGcmVlIFRyaWFsKSI6ZmFsc2UsIlVtYnJhIjpmYWxzZX0sInR5cGUiOnsiQyI6dHJ1ZSwiY29sdW1uLW9yaWVudGVkIjp0cnVlLCJQb3N0Z3JlU1FMIGNvbXBhdGlibGUiOnRydWUsIm1hbmFnZWQiOnRydWUsImdjcCI6dHJ1ZSwic3RhdGVsZXNzIjp0cnVlLCJKYXZhIjp0cnVlLCJDKysiOnRydWUsIk15U1FMIGNvbXBhdGlibGUiOnRydWUsInJvdy1vcmllbnRlZCI6dHJ1ZSwiQ2xpY2tIb3VzZSBkZXJpdmF0aXZlIjp0cnVlLCJlbWJlZGRlZCI6dHJ1ZSwic2VydmVybGVzcyI6dHJ1ZSwiZGF0YWZyYW1lIjp0cnVlLCJhd3MiOnRydWUsImF6dXJlIjp0cnVlLCJhbmFseXRpY2FsIjp0cnVlLCJSdXN0Ijp0cnVlLCJzZWFyY2giOnRydWUsImRvY3VtZW50Ijp0cnVlLCJzb21ld2hhdCBQb3N0Z3JlU1FMIGNvbXBhdGlibGUiOnRydWUsInRpbWUtc2VyaWVzIjp0cnVlfSwibWFjaGluZSI6eyIxNiB2Q1BVIDEyOEdCIjp0cnVlLCI4IHZDUFUgNjRHQiI6dHJ1ZSwic2VydmVybGVzcyI6dHJ1ZSwiMTZhY3UiOnRydWUsImM2YS40eGxhcmdlLCA
 
1MDBnYiBncDIiOnRydWUsIkwiOnRydWUsIk0iOnRydWUsIlMiOnRydWUsIlhTIjp0cnVlLCJjNmEubWV0YWwsIDUwMGdiIGdwMiI6ZmFsc2UsIjE5MkdCIjp0cnVlLCIyNEdCIjp0cnVlLCIzNjBHQiI6dHJ1ZSwiNDhHQiI6dHJ1ZSwiNzIwR0IiOnRydWUsIjk2R0IiOnRydWUsImRldiI6dHJ1ZSwiNzA4R0IiOnRydWUsImM1bi40eGxhcmdlLCA1MDBnYiBncDIiOnRydWUsIkFuYWx5dGljcy0yNTZHQiAoNjQgdkNvcmVzLCAyNTYgR0IpIjp0cnVlLCJjNS40eGxhcmdlLCA1MDBnYiBncDIiOnRydWUsImM2YS40eGxhcmdlLCAxNTAwZ2IgZ3AyIjp0cnVlLCJjbG91ZCI6dHJ1ZSwiZGMyLjh4bGFyZ2UiOnRydWUsInJhMy4xNnhsYXJnZSI6dHJ1ZSwicmEzLjR4bGFyZ2UiOnRydWUsInJhMy54bHBsdXMiOnRydWUsIlMyIjp0cnVlLCJTMjQiOnRydWUsIjJYTCI6dHJ1ZSwiM1hMIjp0cnVlLCI0WEwiOnRydWUsIlhMIjp0cnVlLCJMMSAtIDE2Q1BVIDMyR0IiOnRydWUsImM2YS40eGxhcmdlLCA1MDBnYiBncDMiOnRydWV9LCJjbHVzdGVyX3NpemUiOnsiMSI6dHJ1ZSwiMiI6dHJ1ZSwiNCI6dHJ1ZSwiOCI6dHJ1ZSwiMTYiOnRydWUsIjMyIjp0cnVlLCI2NCI6dHJ1ZSwiMTI4Ijp0cnVlLCJzZXJ2ZXJsZXNzIjp0cnVlfSwibWV0cmljIjoiaG90IiwicXVlcmllcyI6W3RydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVl
 
LHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWUsdHJ1ZSx0cnVlLHRydWVdfQ==
+
+
+Best in class performance on Parquet is now available to anyone. DataFusion’s
+open design lets you start quickly with a full featured Query Engine, including
+SQL, data formats, catalogs, and more, and then customize any behavior you 
need.
+I predict the continued emergence of new classes of data systems now that
+creators can focus the bulk of their innovation on areas such as query
+languages, system integrations, and data formats rather than trying to play
+catchup with core engine performance.
+
+ClickBench also includes results for proprietary storage formats, which require
+costly load / export steps, making them useful in fewer use cases and thus much
+less important than open formats (though the idea of use case specific formats
+is interesting[^2]).
+
+This blog post highlights some of the techniques we used to achieve this
+performance, and celebrates the teamwork involved.
+
+# Rallying The Community around Performance
+
+In July, 2024 [Mehmet Ozan Kabak], CEO of [Synnada], [called on the community 
to
+improve DataFusion’s performance]. This got many of us excited (who doesn’t 
love
+a challenge!), and we have subsequently rallied to steadily improve the
+performance release on release as shown in Figure 2.
+
+[Mehmet Ozan Kabak]: https://www.linkedin.com/in/mehmet-ozan-kabak/)
+[Synnada]: https://www.synnada.ai/
+[called on the community to improve DataFusion’s performance]: 
https://github.com/apache/datafusion/issues/11442#issuecomment-2226834443
+
+<img
+src="{{ site.baseurl }}/img/clickbench-datafusion-43/perf-over-time.png"
+width="100%"
+class="img-responsive"
+alt="ClickBench performance results over time for DataFusion"
+/>
+
+**Figure 2**: ClickBench performance improved over 30% between DataFusion 34
+(released Dec 2023) and DataFusion 43 (released Nov 2024).
+
+Like all good optimization efforts, ours took sustained effort as DataFusion 
ran
+out [single 2x performance improvements] several years ago. Working together 
our
+community of engineers from around the world[^3] and all experience levels[^4]
+pulled it off (check out [this discussion] to get a sense). It may be a "[hobo
+sandwich]" [^5], but it is a tasty one!
+
+[single 2x performance improvements]: 
https://www.influxdata.com/blog/aggregating-millions-groups-fast-apache-arrow-datafusion
+[this discussion]: https://github.com/apache/datafusion/issues/12821
+[hobo sandwich]: https://db.cs.cmu.edu/seminar2024/
+
+Of course, most of these techniques have been implemented and described before,
+but until now they were only available in proprietary systems such as
+[Vertica](https://www.vertica.com/), [DataBricks
+Photon](https://www.databricks.com/product/photon), or
+[Snowflake](https://www.snowflake.com/en/) or in tightly integrated open source
+systems such as [DuckDB](https://duckdb.org/) or
+[ClickHouse](https://clickhouse.com/) which were not designed to extend.
+
+
+## StringView
+
+Performance improved for all queries when DataFusion switched to using Arrow
+`StringView`. Using `StringView` “just” saves some copies and avoids one memory
+access for certain comparisons. However, these copies and comparisons happen to
+occur in many of the hottest loops during query processing, so optimizing them
+resulted in measurable performance improvements.
+
+<img
+src="{{ site.baseurl }}/img/clickbench-datafusion-43/string-view-take.png"
+width="80%"
+class="img-responsive"
+alt="Illustration of how take works with StringView"
+/>
+
+**Figure 3:** Figure from [Using StringView / German Style Strings to Make
+Queries Faster: Part 1] showing how `StringView` saves copying data in many 
cases.
+
+Using StringView to make DataFusion faster for ClickBench required substantial
+careful, low level optimization work described in [Using StringView / German
+Style Strings to Make Queries Faster: Part 1] and [Part 2]. However, it *also*
+required extending the rest of DataFusion’s operations to support the new type.
+You can get a sense of the magnitude of the work required by looking at the 
100+
+pull requests linked to the epic in arrow-rs
+([here](https://github.com/apache/arrow-rs/issues/5374)) and three major epics
+([here](https://github.com/apache/datafusion/issues/10918),
+[here](https://github.com/apache/datafusion/issues/11790) and
+[here](https://github.com/apache/datafusion/issues/11752)) in DataFusion.
+
+[Using StringView / German Style Strings to Make Queries Faster: Part 1]: 
https://www.influxdata.com/blog/faster-queries-with-stringview-part-one-influxdb/
+[Part 2]: 
https://www.influxdata.com/blog/faster-queries-with-stringview-part-two-influxdb/
+
+Here is a partial list of people involved in the project (I am sorry to those 
whom I forgot)
+
+* **Arrow**:  [Xiangpeng Hao](https://github.com/XiangpengHao) (InfluxData’s 
amazing 2024 summer intern and UW Madison PhD), [Yijun 
Zhao](https://github.com/ariesdevil) from DataBend Labs, and [Raphael 
Taylor-Davies](https://github.com/tustvold) laid the foundation.  
[RinChanNOW](https://github.com/RinChanNOWWW) from Tencent and [Andrew 
Duffy](https://github.com/a10y) from SpiralDB helped push it along in the early 
days, and [Liang-Chi Hsieh](https://github.com/viirya), [Daniël 
Heres](https://github.com/Dandandan) reviewed and provided guidance.
+* **DataFusion**:  [Xiangpeng Hao](https://github.com/XiangpengHao), again 
charted the initial path and [Alex Huang](https://github.com/Weijun-H), [Dharan 
Aditya](https://github.com/dharanad) [Lordworms](https://github.com/Lordworms), 
[Jax Liu](https://github.com/goldmedal),  [wiedld](https://github.com/wiedld), 
[Tai Le Manh](https://github.com/tlm365), [yi 
wang](https://github.com/my-vegetable-has-exploded), 
[doupache](https://github.com/doupache), [Jay 
Zhan](https://github.com/jayzhan211) , [Xin Li](https://github.com/xinlifoobar) 
 and [Kaifeng Zheng](https://github.com/Kev1n8) made it real.
+* **DataFusion String Function Migration**:  [Trent 
Hauck](https://github.com/tshauck) organized the effort and set the patterns, 
[Jax Liu](https://github.com/goldmedal) made a clever testing framework, and 
[Austin Liu](https://github.com/austin362667), [Dmitrii 
Bu](https://github.com/demetribu), [Tai Le Manh](https://github.com/tlm365), 
[Chojan Shang](https://github.com/PsiACE), 
[WeblWabl](https://github.com/devanbenz), 
[Lordworms](https://github.com/Lordworms), 
[iamthinh](https://github.com/thinh2), [Bruce 
Ritchie](https://github.com/Omega359), [Kaifeng 
Zheng](https://github.com/Kev1n8), and [Xin Li](https://github.com/xinlifoobar) 
bashed out the conversions.
+
+
+## Parquet
+
+Part DataFusion's speed in ClickBench is reading Parquet files (really) 
quickly,

Review Comment:
   ```suggestion
   Part of the reason for DataFusion's speed in ClickBench is reading Parquet 
files (really) quickly,
   ```



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org
For additional commands, e-mail: github-h...@datafusion.apache.org

Reply via email to