ozankabak commented on code in PR #14699:
URL: https://github.com/apache/datafusion/pull/14699#discussion_r1966455316


##########
datafusion/physical-expr-common/src/physical_expr.rs:
##########
@@ -144,6 +153,111 @@ pub trait PhysicalExpr: Send + Sync + Display + Debug + 
DynEq + DynHash {
         Ok(Some(vec![]))
     }
 
+    /// Computes the output statistics for the expression, given the input
+    /// statistics.
+    ///
+    /// # Parameters
+    ///
+    /// * `children` are the statistics for the children (inputs) of this
+    ///   expression.
+    ///
+    /// # Returns
+    ///
+    /// A `Result` containing the output statistics for the expression in
+    /// case of success, or an error object in case of failure.
+    ///
+    /// Expressions (should) implement this function and utilize the 
independence
+    /// assumption, match on children distribution types and compute the output
+    /// statistics accordingly. The default implementation simply creates an
+    /// unknown output distribution by combining input ranges. This logic loses
+    /// distribution information, but is a safe default.
+    fn evaluate_statistics(&self, children: &[&StatisticsV2]) -> 
Result<StatisticsV2> {
+        let children_ranges = children
+            .iter()
+            .map(|c| c.range())
+            .collect::<Result<Vec<_>>>()?;
+        let children_ranges_refs = children_ranges.iter().collect::<Vec<_>>();
+        let output_interval = 
self.evaluate_bounds(children_ranges_refs.as_slice())?;
+        let dt = output_interval.data_type();
+        if dt.eq(&DataType::Boolean) {
+            let p = if output_interval.eq(&Interval::CERTAINLY_TRUE) {
+                ScalarValue::new_one(&dt)
+            } else if output_interval.eq(&Interval::CERTAINLY_FALSE) {
+                ScalarValue::new_zero(&dt)
+            } else {
+                ScalarValue::try_from(&dt)
+            }?;
+            StatisticsV2::new_bernoulli(p)

Review Comment:
   Because there is no other choice :) The only applicable distribution in case 
of a boolean variable is the Bernoulli distribution. Bernoulli distribution is 
just the stats term for a boolean variable with a parameter for "probability of 
being true".



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org
For additional commands, e-mail: github-h...@datafusion.apache.org

Reply via email to