Standing-Man commented on code in PR #16936: URL: https://github.com/apache/datafusion/pull/16936#discussion_r2238684701
########## datafusion/spark/src/function/array/spark_array.rs: ########## @@ -0,0 +1,265 @@ +// Licensed to the Apache Software Foundation (ASF) under one +// or more contributor license agreements. See the NOTICE file +// distributed with this work for additional information +// regarding copyright ownership. The ASF licenses this file +// to you under the Apache License, Version 2.0 (the +// "License"); you may not use this file except in compliance +// with the License. You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, +// software distributed under the License is distributed on an +// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +// KIND, either express or implied. See the License for the +// specific language governing permissions and limitations +// under the License. + +use std::{any::Any, sync::Arc}; + +use arrow::array::{ + make_array, new_null_array, Array, ArrayData, ArrayRef, Capacities, GenericListArray, + MutableArrayData, NullArray, OffsetSizeTrait, +}; +use arrow::buffer::OffsetBuffer; +use arrow::datatypes::{DataType, Field, FieldRef}; +use datafusion_common::utils::SingleRowListArrayBuilder; +use datafusion_common::{plan_datafusion_err, plan_err, Result}; +use datafusion_expr::type_coercion::binary::comparison_coercion; +use datafusion_expr::{ + ColumnarValue, ReturnFieldArgs, ScalarFunctionArgs, ScalarUDFImpl, Signature, + TypeSignature, Volatility, +}; + +use crate::function::functions_nested_utils::make_scalar_function; + +#[derive(Debug)] +pub struct SparkArray { + signature: Signature, + aliases: Vec<String>, +} + +impl Default for SparkArray { + fn default() -> Self { + Self::new() + } +} + +impl SparkArray { + pub fn new() -> Self { + Self { + signature: Signature::one_of( + vec![TypeSignature::UserDefined, TypeSignature::Nullary], + Volatility::Immutable, + ), + aliases: vec![String::from("spark_make_array")], + } + } +} + +impl ScalarUDFImpl for SparkArray { + fn as_any(&self) -> &dyn Any { + self + } + + fn name(&self) -> &str { + "array" + } + + fn signature(&self) -> &Signature { + &self.signature + } + + fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> { + match arg_types.len() { + 0 => Ok(empty_array_type()), + _ => { + let mut expr_type = DataType::Null; + for arg_type in arg_types { + if !arg_type.equals_datatype(&DataType::Null) { + expr_type = arg_type.clone(); + break; + } + } + + if expr_type.is_null() { + expr_type = DataType::Int32; + } + + Ok(DataType::List(Arc::new(Field::new_list_field( + expr_type, true, + )))) + } + } + } + + fn return_field_from_args(&self, args: ReturnFieldArgs) -> Result<FieldRef> { + let data_types = args + .arg_fields + .iter() + .map(|f| f.data_type()) + .cloned() + .collect::<Vec<_>>(); + let return_type = self.return_type(&data_types)?; + Ok(Arc::new(Field::new(self.name(), return_type, false))) + } + + fn invoke_with_args(&self, args: ScalarFunctionArgs) -> Result<ColumnarValue> { + let ScalarFunctionArgs { args, .. } = args; + make_scalar_function(make_array_inner)(args.as_slice()) + } + + fn aliases(&self) -> &[String] { + &self.aliases + } + + fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> { + let first_type = arg_types.first().ok_or_else(|| { + plan_datafusion_err!("Spark array function requires at least one argument") + })?; + let new_type = + arg_types + .iter() + .skip(1) + .try_fold(first_type.clone(), |acc, x| { + // The coerced types found by `comparison_coercion` are not guaranteed to be + // coercible for the arguments. `comparison_coercion` returns more loose + // types that can be coerced to both `acc` and `x` for comparison purpose. + // See `maybe_data_types` for the actual coercion. + let coerced_type = comparison_coercion(&acc, x); + if let Some(coerced_type) = coerced_type { + Ok(coerced_type) + } else { + plan_err!("Coercion from {acc:?} to {x:?} failed.") + } + })?; + Ok(vec![new_type; arg_types.len()]) + } +} + +// Empty array is a special case that is useful for many other array functions +pub(super) fn empty_array_type() -> DataType { + DataType::List(Arc::new(Field::new_list_field(DataType::Int32, true))) +} + +/// `make_array_inner` is the implementation of the `make_array` function. +/// Constructs an array using the input `data` as `ArrayRef`. +/// Returns a reference-counted `Array` instance result. +pub fn make_array_inner(arrays: &[ArrayRef]) -> Result<ArrayRef> { + let mut data_type = DataType::Null; + for arg in arrays { + let arg_data_type = arg.data_type(); + if !arg_data_type.equals_datatype(&DataType::Null) { + data_type = arg_data_type.clone(); + break; + } + } + + match data_type { + // Either an empty array or all nulls: + DataType::Null => { + let length = arrays.iter().map(|a| a.len()).sum(); + // By default Int32 + let array = new_null_array(&DataType::Int32, length); + Ok(Arc::new( + SingleRowListArrayBuilder::new(array) + .with_nullable(true) + .build_list_array(), + )) + } + DataType::LargeList(..) => array_array::<i64>(arrays, data_type), + _ => array_array::<i32>(arrays, data_type), + } +} + +/// Convert one or more [`ArrayRef`] of the same type into a +/// `ListArray` or 'LargeListArray' depending on the offset size. +/// +/// # Example (non nested) +/// +/// Calling `array(col1, col2)` where col1 and col2 are non nested +/// would return a single new `ListArray`, where each row was a list +/// of 2 elements: +/// +/// ```text +/// ┌─────────┐ ┌─────────┐ ┌──────────────┐ +/// │ ┌─────┐ │ │ ┌─────┐ │ │ ┌──────────┐ │ +/// │ │ A │ │ │ │ X │ │ │ │ [A, X] │ │ +/// │ ├─────┤ │ │ ├─────┤ │ │ ├──────────┤ │ +/// │ │NULL │ │ │ │ Y │ │──────────▶│ │[NULL, Y] │ │ +/// │ ├─────┤ │ │ ├─────┤ │ │ ├──────────┤ │ +/// │ │ C │ │ │ │ Z │ │ │ │ [C, Z] │ │ +/// │ └─────┘ │ │ └─────┘ │ │ └──────────┘ │ +/// └─────────┘ └─────────┘ └──────────────┘ +/// col1 col2 output +/// ``` +/// +/// # Example (nested) +/// +/// Calling `array(col1, col2)` where col1 and col2 are lists +/// would return a single new `ListArray`, where each row was a list +/// of the corresponding elements of col1 and col2. +/// +/// ``` text +/// ┌──────────────┐ ┌──────────────┐ ┌─────────────────────────────┐ +/// │ ┌──────────┐ │ │ ┌──────────┐ │ │ ┌────────────────────────┐ │ +/// │ │ [A, X] │ │ │ │ [] │ │ │ │ [[A, X], []] │ │ +/// │ ├──────────┤ │ │ ├──────────┤ │ │ ├────────────────────────┤ │ +/// │ │[NULL, Y] │ │ │ │[Q, R, S] │ │───────▶│ │ [[NULL, Y], [Q, R, S]] │ │ +/// │ ├──────────┤ │ │ ├──────────┤ │ │ ├────────────────────────│ │ +/// │ │ [C, Z] │ │ │ │ NULL │ │ │ │ [[C, Z], NULL] │ │ +/// │ └──────────┘ │ │ └──────────┘ │ │ └────────────────────────┘ │ +/// └──────────────┘ └──────────────┘ └─────────────────────────────┘ +/// col1 col2 output +/// ``` +fn array_array<O: OffsetSizeTrait>( + args: &[ArrayRef], + data_type: DataType, +) -> Result<ArrayRef> { + // do not accept 0 arguments. + if args.is_empty() { + return plan_err!("Array requires at least one argument"); + } + + let mut data = vec![]; + let mut total_len = 0; + for arg in args { + let arg_data = if arg.as_any().is::<NullArray>() { + ArrayData::new_empty(&data_type) + } else { + arg.to_data() + }; + total_len += arg_data.len(); + data.push(arg_data); + } + + let mut offsets: Vec<O> = Vec::with_capacity(total_len); + offsets.push(O::usize_as(0)); + + let capacity = Capacities::Array(total_len); + let data_ref = data.iter().collect::<Vec<_>>(); + let mut mutable = MutableArrayData::with_capacities(data_ref, true, capacity); + + let num_rows = args[0].len(); + for row_idx in 0..num_rows { + for (arr_idx, arg) in args.iter().enumerate() { + if !arg.as_any().is::<NullArray>() + && !arg.is_null(row_idx) + && arg.is_valid(row_idx) + { + mutable.extend(arr_idx, row_idx, row_idx + 1); + } else { + mutable.extend_nulls(1); + } + } + offsets.push(O::usize_as(mutable.len())); + } + let data = mutable.freeze(); + + Ok(Arc::new(GenericListArray::<O>::try_new( + Arc::new(Field::new_list_field(data_type, true)), Review Comment: I noticed that the `Field` struct has `with_name` method which can be used to reset the `field_name`. another approach: ``` Ok(Arc::new(GenericListArray::<O>::try_new( Arc::new(with_list_field_name("item", Field::new_list_field(data_type, true))), OffsetBuffer::new(offsets.into()), make_array(data), None, )?)) } fn with_list_field_name(name: impl Into<String>, field: Field) -> Field { field.with_name(name) } ``` -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org For additional commands, e-mail: github-h...@datafusion.apache.org