2010YOUY01 commented on code in PR #17482:
URL: https://github.com/apache/datafusion/pull/17482#discussion_r2348639678


##########
datafusion/physical-plan/src/joins/piecewise_merge_join/classic_join.rs:
##########
@@ -0,0 +1,1471 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements.  See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership.  The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License.  You may obtain a copy of the License at
+//
+//   http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied.  See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+//! Stream Implementation for PiecewiseMergeJoin's Classic Join (Left, Right, 
Full, Inner)
+
+use arrow::array::{
+    new_null_array, Array, PrimitiveArray, PrimitiveBuilder, 
RecordBatchOptions,
+};
+use arrow::compute::take;
+use arrow::datatypes::{UInt32Type, UInt64Type};
+use arrow::{
+    array::{
+        ArrayRef, RecordBatch, UInt32Array, UInt32Builder, UInt64Array, 
UInt64Builder,
+    },
+    compute::{sort_to_indices, take_record_batch},
+};
+use arrow_schema::{ArrowError, Schema, SchemaRef, SortOptions};
+use datafusion_common::NullEquality;
+use datafusion_common::{exec_err, internal_err, Result};
+use datafusion_execution::{RecordBatchStream, SendableRecordBatchStream};
+use datafusion_expr::{JoinType, Operator};
+use datafusion_physical_expr::PhysicalExprRef;
+use futures::{Stream, StreamExt};
+use std::{cmp::Ordering, task::ready};
+use std::{sync::Arc, task::Poll};
+
+use crate::handle_state;
+use crate::joins::piecewise_merge_join::exec::{BufferedSide, 
BufferedSideReadyState};
+use crate::joins::piecewise_merge_join::utils::need_produce_result_in_final;
+use crate::joins::utils::{compare_join_arrays, 
get_final_indices_from_shared_bitmap};
+use crate::joins::utils::{BuildProbeJoinMetrics, StatefulStreamResult};
+pub(super) enum PiecewiseMergeJoinStreamState {
+    WaitBufferedSide,
+    FetchStreamBatch,
+    ProcessStreamBatch(StreamedBatch),
+    ExhaustedStreamSide,
+    Completed,
+}
+
+impl PiecewiseMergeJoinStreamState {
+    // Grab mutable reference to the current stream batch
+    fn try_as_process_stream_batch_mut(&mut self) -> Result<&mut 
StreamedBatch> {
+        match self {
+            PiecewiseMergeJoinStreamState::ProcessStreamBatch(state) => 
Ok(state),
+            _ => internal_err!("Expected streamed batch in StreamBatch"),
+        }
+    }
+}
+
+pub(super) struct StreamedBatch {
+    pub batch: RecordBatch,
+    values: Vec<ArrayRef>,
+}
+
+impl StreamedBatch {
+    #[allow(dead_code)]
+    fn new(batch: RecordBatch, values: Vec<ArrayRef>) -> Self {
+        Self { batch, values }
+    }
+
+    fn values(&self) -> &Vec<ArrayRef> {
+        &self.values
+    }
+}
+
+pub(super) struct ClassicPWMJStream {
+    // Output schema of the `PiecewiseMergeJoin`
+    pub schema: Arc<Schema>,
+
+    // Physical expression that is evaluated on the streamed side
+    // We do not need on_buffered as this is already evaluated when
+    // creating the buffered side which happens before initializing
+    // `PiecewiseMergeJoinStream`
+    pub on_streamed: PhysicalExprRef,
+    // Type of join
+    pub join_type: JoinType,
+    // Comparison operator
+    pub operator: Operator,
+    // Streamed batch
+    pub streamed: SendableRecordBatchStream,
+    // Streamed schema
+    streamed_schema: SchemaRef,
+    // Buffered side data
+    buffered_side: BufferedSide,
+    // Tracks the state of the `PiecewiseMergeJoin`
+    state: PiecewiseMergeJoinStreamState,
+    // Sort option for buffered and streamed side (specifies whether
+    // the sort is ascending or descending)
+    sort_option: SortOptions,
+    // Metrics for build + probe joins
+    join_metrics: BuildProbeJoinMetrics,
+    // Tracking incremental state for emitting record batches
+    batch_process_state: BatchProcessState,
+    // Creates batch size
+    batch_size: usize,
+}
+
+impl RecordBatchStream for ClassicPWMJStream {
+    fn schema(&self) -> SchemaRef {
+        Arc::clone(&self.schema)
+    }
+}
+
+// `PiecewiseMergeJoinStreamState` is separated into `WaitBufferedSide`, 
`FetchStreamBatch`,
+// `ProcessStreamBatch`, `ExhaustedStreamSide` and `Completed`.
+//
+// Classic Joins
+//  1. `WaitBufferedSide` - Load in the buffered side data into memory.
+//  2. `FetchStreamBatch` -  Fetch + sort incoming stream batches. We switch 
the state to
+//      `ExhaustedStreamBatch` once stream batches are exhausted.
+//  3. `ProcessStreamBatch` - Compare stream batch row values against the 
buffered side data.
+//  4. `ExhaustedStreamBatch` - If the join type is Left or Inner we will 
return state as
+//      `Completed` however for Full and Right we will need to process the 
matched/unmatched rows.
+impl ClassicPWMJStream {
+    // Creates a new `PiecewiseMergeJoinStream` instance
+    #[allow(clippy::too_many_arguments)]
+    pub fn try_new(
+        schema: Arc<Schema>,
+        on_streamed: PhysicalExprRef,
+        join_type: JoinType,
+        operator: Operator,
+        streamed: SendableRecordBatchStream,
+        buffered_side: BufferedSide,
+        state: PiecewiseMergeJoinStreamState,
+        sort_option: SortOptions,
+        join_metrics: BuildProbeJoinMetrics,
+        batch_size: usize,
+    ) -> Self {
+        let streamed_schema = streamed.schema();
+        Self {
+            schema,
+            on_streamed,
+            join_type,
+            operator,
+            streamed_schema,
+            streamed,
+            buffered_side,
+            state,
+            sort_option,
+            join_metrics,
+            batch_process_state: BatchProcessState::new(),
+            batch_size,
+        }
+    }
+
+    fn poll_next_impl(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Option<Result<RecordBatch>>> {
+        loop {
+            return match self.state {
+                PiecewiseMergeJoinStreamState::WaitBufferedSide => {
+                    handle_state!(ready!(self.collect_buffered_side(cx)))
+                }
+                PiecewiseMergeJoinStreamState::FetchStreamBatch => {
+                    handle_state!(ready!(self.fetch_stream_batch(cx)))
+                }
+                PiecewiseMergeJoinStreamState::ProcessStreamBatch(_) => {
+                    handle_state!(self.process_stream_batch())
+                }
+                PiecewiseMergeJoinStreamState::ExhaustedStreamSide => {
+                    handle_state!(self.process_unmatched_buffered_batch())
+                }
+                PiecewiseMergeJoinStreamState::Completed => Poll::Ready(None),
+            };
+        }
+    }
+
+    // Collects buffered side data
+    fn collect_buffered_side(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Result<StatefulStreamResult<Option<RecordBatch>>>> {
+        let build_timer = self.join_metrics.build_time.timer();
+        let buffered_data = ready!(self
+            .buffered_side
+            .try_as_initial_mut()?
+            .buffered_fut
+            .get_shared(cx))?;
+        build_timer.done();
+
+        // We will start fetching stream batches for classic joins
+        self.state = PiecewiseMergeJoinStreamState::FetchStreamBatch;
+
+        self.buffered_side =
+            BufferedSide::Ready(BufferedSideReadyState { buffered_data });
+
+        Poll::Ready(Ok(StatefulStreamResult::Continue))
+    }
+
+    // Fetches incoming stream batches
+    fn fetch_stream_batch(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Result<StatefulStreamResult<Option<RecordBatch>>>> {
+        match ready!(self.streamed.poll_next_unpin(cx)) {
+            None => {
+                self.state = 
PiecewiseMergeJoinStreamState::ExhaustedStreamSide;
+            }
+            Some(Ok(batch)) => {
+                // Evaluate the streamed physical expression on the stream 
batch
+                let stream_values: ArrayRef = self
+                    .on_streamed
+                    .evaluate(&batch)?
+                    .into_array(batch.num_rows())?;
+
+                self.join_metrics.input_batches.add(1);
+                self.join_metrics.input_rows.add(batch.num_rows());
+
+                // Sort stream values and change the streamed record batch 
accordingly
+                let indices = sort_to_indices(
+                    stream_values.as_ref(),
+                    Some(self.sort_option),
+                    None,
+                )?;
+                let stream_batch = take_record_batch(&batch, &indices)?;
+                let stream_values = take(stream_values.as_ref(), &indices, 
None)?;
+
+                self.state =
+                    
PiecewiseMergeJoinStreamState::ProcessStreamBatch(StreamedBatch {
+                        batch: stream_batch,
+                        values: vec![stream_values],
+                    });
+            }
+            Some(Err(err)) => return Poll::Ready(Err(err)),
+        };
+
+        Poll::Ready(Ok(StatefulStreamResult::Continue))
+    }
+
+    // Only classic join will call. This function will process stream batches 
and evaluate against
+    // the buffered side data.
+    fn process_stream_batch(
+        &mut self,
+    ) -> Result<StatefulStreamResult<Option<RecordBatch>>> {
+        let buffered_side = self.buffered_side.try_as_ready_mut()?;
+        let stream_batch = self.state.try_as_process_stream_batch_mut()?;
+
+        let batch = resolve_classic_join(
+            buffered_side,
+            stream_batch,
+            Arc::clone(&self.schema),
+            self.operator,
+            self.sort_option,
+            self.join_type,
+            &mut self.batch_process_state,
+            self.batch_size,
+        )?;
+
+        if self.batch_process_state.continue_process {
+            return Ok(StatefulStreamResult::Ready(Some(batch)));
+        }
+
+        self.state = PiecewiseMergeJoinStreamState::FetchStreamBatch;
+        Ok(StatefulStreamResult::Ready(Some(batch)))
+    }
+
+    // Process remaining unmatched rows
+    fn process_unmatched_buffered_batch(
+        &mut self,
+    ) -> Result<StatefulStreamResult<Option<RecordBatch>>> {
+        // Return early for `JoinType::Right` and `JoinType::Inner`
+        if matches!(self.join_type, JoinType::Right | JoinType::Inner) {
+            self.state = PiecewiseMergeJoinStreamState::Completed;
+            return Ok(StatefulStreamResult::Ready(None));
+        }
+
+        let timer = self.join_metrics.join_time.timer();
+
+        let buffered_data =
+            
Arc::clone(&self.buffered_side.try_as_ready().unwrap().buffered_data);
+
+        // Check if the same batch needs to be checked for values again
+        if let Some(start_idx) = self.batch_process_state.process_rest {
+            if let Some(buffered_indices) = 
&self.batch_process_state.buffered_indices {
+                let remaining = buffered_indices.len() - start_idx;
+
+                // Branch into this and return value if there are more rows to 
deal with
+                if remaining > self.batch_size {
+                    let buffered_batch = buffered_data.batch();
+                    let empty_stream_batch =
+                        
RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+                    let buffered_chunk_ref =
+                        buffered_indices.slice(start_idx, self.batch_size);
+                    let new_buffered_indices = buffered_chunk_ref
+                        .as_any()
+                        .downcast_ref::<UInt64Array>()
+                        .expect("downcast to UInt64Array after slice");
+
+                    let streamed_indices: UInt32Array =
+                        (0..new_buffered_indices.len() as u32).collect();
+
+                    let batch = build_matched_indices(
+                        Arc::clone(&self.schema),
+                        &empty_stream_batch,
+                        buffered_batch,
+                        streamed_indices,
+                        new_buffered_indices.clone(),
+                    )?;
+
+                    self.batch_process_state
+                        .set_process_rest(Some(start_idx + self.batch_size));
+                    self.batch_process_state.continue_process = true;
+
+                    return Ok(StatefulStreamResult::Ready(Some(batch)));
+                }
+
+                let buffered_batch = buffered_data.batch();
+                let empty_stream_batch =
+                    RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+                let buffered_chunk_ref = buffered_indices.slice(start_idx, 
remaining);
+                let new_buffered_indices = buffered_chunk_ref
+                    .as_any()
+                    .downcast_ref::<UInt64Array>()
+                    .expect("downcast to UInt64Array after slice");
+
+                let streamed_indices: UInt32Array =
+                    (0..new_buffered_indices.len() as u32).collect();
+
+                let batch = build_matched_indices(
+                    Arc::clone(&self.schema),
+                    &empty_stream_batch,
+                    buffered_batch,
+                    streamed_indices,
+                    new_buffered_indices.clone(),
+                )?;
+
+                self.batch_process_state.reset();
+
+                timer.done();
+                self.join_metrics.output_batches.add(1);
+                self.state = PiecewiseMergeJoinStreamState::Completed;
+
+                return Ok(StatefulStreamResult::Ready(Some(batch)));
+            }
+
+            return exec_err!("Batch process state should hold buffered 
indices");
+        }
+
+        let (buffered_indices, streamed_indices) = 
get_final_indices_from_shared_bitmap(
+            &buffered_data.visited_indices_bitmap,
+            self.join_type,
+            true,
+        );
+
+        // If the output indices is larger than the limit for the incremental 
batching then
+        // proceed to outputting all matches up to that index, return batch, 
and the matching
+        // will start next on the updated index (`process_rest`)
+        if buffered_indices.len() > self.batch_size {
+            let buffered_batch = buffered_data.batch();
+            let empty_stream_batch =
+                RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+            let indices_chunk_ref = buffered_indices
+                .slice(self.batch_process_state.start_idx, self.batch_size);
+
+            let indices_chunk = indices_chunk_ref
+                .as_any()
+                .downcast_ref::<UInt64Array>()
+                .expect("downcast to UInt64Array after slice");
+
+            let batch = build_matched_indices(
+                Arc::clone(&self.schema),
+                &empty_stream_batch,
+                buffered_batch,
+                streamed_indices,
+                indices_chunk.clone(),
+            )?;
+
+            self.batch_process_state.buffered_indices = Some(buffered_indices);
+            self.batch_process_state
+                .set_process_rest(Some(self.batch_size));
+            self.batch_process_state.continue_process = true;
+
+            return Ok(StatefulStreamResult::Ready(Some(batch)));
+        }
+
+        let buffered_batch = buffered_data.batch();
+        let empty_stream_batch =
+            RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+        let batch = build_matched_indices(
+            Arc::clone(&self.schema),
+            &empty_stream_batch,
+            buffered_batch,
+            streamed_indices,
+            buffered_indices,
+        )?;
+
+        timer.done();
+        self.join_metrics.output_batches.add(1);
+        self.state = PiecewiseMergeJoinStreamState::Completed;
+
+        Ok(StatefulStreamResult::Ready(Some(batch)))
+    }
+}
+
+// Holds all information for processing incremental output
+struct BatchProcessState {
+    // Used to pick up from the last index on the stream side
+    start_idx: usize,
+    // Used to pick up from the last index on the buffered side
+    pivot: usize,

Review Comment:
   I think using `buffer_idx` and `stream_idx` is clearer for the above two 
fields.
   
   (You might already know this, but editors support one-click global renaming 
— I mention it since I’m suggesting lots of renames)



##########
datafusion/physical-plan/src/joins/piecewise_merge_join/classic_join.rs:
##########
@@ -0,0 +1,1471 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements.  See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership.  The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License.  You may obtain a copy of the License at
+//
+//   http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied.  See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+//! Stream Implementation for PiecewiseMergeJoin's Classic Join (Left, Right, 
Full, Inner)
+
+use arrow::array::{
+    new_null_array, Array, PrimitiveArray, PrimitiveBuilder, 
RecordBatchOptions,
+};
+use arrow::compute::take;
+use arrow::datatypes::{UInt32Type, UInt64Type};
+use arrow::{
+    array::{
+        ArrayRef, RecordBatch, UInt32Array, UInt32Builder, UInt64Array, 
UInt64Builder,
+    },
+    compute::{sort_to_indices, take_record_batch},
+};
+use arrow_schema::{ArrowError, Schema, SchemaRef, SortOptions};
+use datafusion_common::NullEquality;
+use datafusion_common::{exec_err, internal_err, Result};
+use datafusion_execution::{RecordBatchStream, SendableRecordBatchStream};
+use datafusion_expr::{JoinType, Operator};
+use datafusion_physical_expr::PhysicalExprRef;
+use futures::{Stream, StreamExt};
+use std::{cmp::Ordering, task::ready};
+use std::{sync::Arc, task::Poll};
+
+use crate::handle_state;
+use crate::joins::piecewise_merge_join::exec::{BufferedSide, 
BufferedSideReadyState};
+use crate::joins::piecewise_merge_join::utils::need_produce_result_in_final;
+use crate::joins::utils::{compare_join_arrays, 
get_final_indices_from_shared_bitmap};
+use crate::joins::utils::{BuildProbeJoinMetrics, StatefulStreamResult};
+pub(super) enum PiecewiseMergeJoinStreamState {
+    WaitBufferedSide,
+    FetchStreamBatch,
+    ProcessStreamBatch(StreamedBatch),
+    ExhaustedStreamSide,
+    Completed,
+}
+
+impl PiecewiseMergeJoinStreamState {
+    // Grab mutable reference to the current stream batch
+    fn try_as_process_stream_batch_mut(&mut self) -> Result<&mut 
StreamedBatch> {
+        match self {
+            PiecewiseMergeJoinStreamState::ProcessStreamBatch(state) => 
Ok(state),
+            _ => internal_err!("Expected streamed batch in StreamBatch"),
+        }
+    }
+}
+
+pub(super) struct StreamedBatch {
+    pub batch: RecordBatch,
+    values: Vec<ArrayRef>,
+}
+
+impl StreamedBatch {
+    #[allow(dead_code)]
+    fn new(batch: RecordBatch, values: Vec<ArrayRef>) -> Self {
+        Self { batch, values }
+    }
+
+    fn values(&self) -> &Vec<ArrayRef> {
+        &self.values
+    }
+}
+
+pub(super) struct ClassicPWMJStream {
+    // Output schema of the `PiecewiseMergeJoin`
+    pub schema: Arc<Schema>,
+
+    // Physical expression that is evaluated on the streamed side
+    // We do not need on_buffered as this is already evaluated when
+    // creating the buffered side which happens before initializing
+    // `PiecewiseMergeJoinStream`
+    pub on_streamed: PhysicalExprRef,
+    // Type of join
+    pub join_type: JoinType,
+    // Comparison operator
+    pub operator: Operator,
+    // Streamed batch
+    pub streamed: SendableRecordBatchStream,
+    // Streamed schema
+    streamed_schema: SchemaRef,
+    // Buffered side data
+    buffered_side: BufferedSide,
+    // Tracks the state of the `PiecewiseMergeJoin`
+    state: PiecewiseMergeJoinStreamState,
+    // Sort option for buffered and streamed side (specifies whether
+    // the sort is ascending or descending)
+    sort_option: SortOptions,
+    // Metrics for build + probe joins
+    join_metrics: BuildProbeJoinMetrics,
+    // Tracking incremental state for emitting record batches
+    batch_process_state: BatchProcessState,
+    // Creates batch size
+    batch_size: usize,
+}
+
+impl RecordBatchStream for ClassicPWMJStream {
+    fn schema(&self) -> SchemaRef {
+        Arc::clone(&self.schema)
+    }
+}
+
+// `PiecewiseMergeJoinStreamState` is separated into `WaitBufferedSide`, 
`FetchStreamBatch`,
+// `ProcessStreamBatch`, `ExhaustedStreamSide` and `Completed`.
+//
+// Classic Joins
+//  1. `WaitBufferedSide` - Load in the buffered side data into memory.
+//  2. `FetchStreamBatch` -  Fetch + sort incoming stream batches. We switch 
the state to
+//      `ExhaustedStreamBatch` once stream batches are exhausted.
+//  3. `ProcessStreamBatch` - Compare stream batch row values against the 
buffered side data.
+//  4. `ExhaustedStreamBatch` - If the join type is Left or Inner we will 
return state as
+//      `Completed` however for Full and Right we will need to process the 
matched/unmatched rows.
+impl ClassicPWMJStream {
+    // Creates a new `PiecewiseMergeJoinStream` instance
+    #[allow(clippy::too_many_arguments)]
+    pub fn try_new(
+        schema: Arc<Schema>,
+        on_streamed: PhysicalExprRef,
+        join_type: JoinType,
+        operator: Operator,
+        streamed: SendableRecordBatchStream,
+        buffered_side: BufferedSide,
+        state: PiecewiseMergeJoinStreamState,
+        sort_option: SortOptions,
+        join_metrics: BuildProbeJoinMetrics,
+        batch_size: usize,
+    ) -> Self {
+        let streamed_schema = streamed.schema();
+        Self {
+            schema,
+            on_streamed,
+            join_type,
+            operator,
+            streamed_schema,
+            streamed,
+            buffered_side,
+            state,
+            sort_option,
+            join_metrics,
+            batch_process_state: BatchProcessState::new(),
+            batch_size,
+        }
+    }
+
+    fn poll_next_impl(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Option<Result<RecordBatch>>> {
+        loop {
+            return match self.state {
+                PiecewiseMergeJoinStreamState::WaitBufferedSide => {
+                    handle_state!(ready!(self.collect_buffered_side(cx)))
+                }
+                PiecewiseMergeJoinStreamState::FetchStreamBatch => {
+                    handle_state!(ready!(self.fetch_stream_batch(cx)))
+                }
+                PiecewiseMergeJoinStreamState::ProcessStreamBatch(_) => {
+                    handle_state!(self.process_stream_batch())
+                }
+                PiecewiseMergeJoinStreamState::ExhaustedStreamSide => {
+                    handle_state!(self.process_unmatched_buffered_batch())
+                }
+                PiecewiseMergeJoinStreamState::Completed => Poll::Ready(None),
+            };
+        }
+    }
+
+    // Collects buffered side data
+    fn collect_buffered_side(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Result<StatefulStreamResult<Option<RecordBatch>>>> {
+        let build_timer = self.join_metrics.build_time.timer();
+        let buffered_data = ready!(self
+            .buffered_side
+            .try_as_initial_mut()?
+            .buffered_fut
+            .get_shared(cx))?;
+        build_timer.done();
+
+        // We will start fetching stream batches for classic joins
+        self.state = PiecewiseMergeJoinStreamState::FetchStreamBatch;
+
+        self.buffered_side =
+            BufferedSide::Ready(BufferedSideReadyState { buffered_data });
+
+        Poll::Ready(Ok(StatefulStreamResult::Continue))
+    }
+
+    // Fetches incoming stream batches
+    fn fetch_stream_batch(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Result<StatefulStreamResult<Option<RecordBatch>>>> {
+        match ready!(self.streamed.poll_next_unpin(cx)) {
+            None => {
+                self.state = 
PiecewiseMergeJoinStreamState::ExhaustedStreamSide;
+            }
+            Some(Ok(batch)) => {
+                // Evaluate the streamed physical expression on the stream 
batch
+                let stream_values: ArrayRef = self
+                    .on_streamed
+                    .evaluate(&batch)?
+                    .into_array(batch.num_rows())?;
+
+                self.join_metrics.input_batches.add(1);
+                self.join_metrics.input_rows.add(batch.num_rows());
+
+                // Sort stream values and change the streamed record batch 
accordingly
+                let indices = sort_to_indices(
+                    stream_values.as_ref(),
+                    Some(self.sort_option),
+                    None,
+                )?;
+                let stream_batch = take_record_batch(&batch, &indices)?;
+                let stream_values = take(stream_values.as_ref(), &indices, 
None)?;
+
+                self.state =
+                    
PiecewiseMergeJoinStreamState::ProcessStreamBatch(StreamedBatch {
+                        batch: stream_batch,
+                        values: vec![stream_values],
+                    });
+            }
+            Some(Err(err)) => return Poll::Ready(Err(err)),
+        };
+
+        Poll::Ready(Ok(StatefulStreamResult::Continue))
+    }
+
+    // Only classic join will call. This function will process stream batches 
and evaluate against
+    // the buffered side data.
+    fn process_stream_batch(
+        &mut self,
+    ) -> Result<StatefulStreamResult<Option<RecordBatch>>> {
+        let buffered_side = self.buffered_side.try_as_ready_mut()?;
+        let stream_batch = self.state.try_as_process_stream_batch_mut()?;
+
+        let batch = resolve_classic_join(
+            buffered_side,
+            stream_batch,
+            Arc::clone(&self.schema),
+            self.operator,
+            self.sort_option,
+            self.join_type,
+            &mut self.batch_process_state,
+            self.batch_size,
+        )?;
+
+        if self.batch_process_state.continue_process {
+            return Ok(StatefulStreamResult::Ready(Some(batch)));
+        }
+
+        self.state = PiecewiseMergeJoinStreamState::FetchStreamBatch;
+        Ok(StatefulStreamResult::Ready(Some(batch)))
+    }
+
+    // Process remaining unmatched rows
+    fn process_unmatched_buffered_batch(
+        &mut self,
+    ) -> Result<StatefulStreamResult<Option<RecordBatch>>> {
+        // Return early for `JoinType::Right` and `JoinType::Inner`
+        if matches!(self.join_type, JoinType::Right | JoinType::Inner) {
+            self.state = PiecewiseMergeJoinStreamState::Completed;
+            return Ok(StatefulStreamResult::Ready(None));
+        }
+
+        let timer = self.join_metrics.join_time.timer();
+
+        let buffered_data =
+            
Arc::clone(&self.buffered_side.try_as_ready().unwrap().buffered_data);
+
+        // Check if the same batch needs to be checked for values again
+        if let Some(start_idx) = self.batch_process_state.process_rest {
+            if let Some(buffered_indices) = 
&self.batch_process_state.buffered_indices {
+                let remaining = buffered_indices.len() - start_idx;
+
+                // Branch into this and return value if there are more rows to 
deal with
+                if remaining > self.batch_size {
+                    let buffered_batch = buffered_data.batch();
+                    let empty_stream_batch =
+                        
RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+                    let buffered_chunk_ref =
+                        buffered_indices.slice(start_idx, self.batch_size);
+                    let new_buffered_indices = buffered_chunk_ref
+                        .as_any()
+                        .downcast_ref::<UInt64Array>()
+                        .expect("downcast to UInt64Array after slice");
+
+                    let streamed_indices: UInt32Array =
+                        (0..new_buffered_indices.len() as u32).collect();
+
+                    let batch = build_matched_indices(
+                        Arc::clone(&self.schema),
+                        &empty_stream_batch,
+                        buffered_batch,
+                        streamed_indices,
+                        new_buffered_indices.clone(),
+                    )?;
+
+                    self.batch_process_state
+                        .set_process_rest(Some(start_idx + self.batch_size));
+                    self.batch_process_state.continue_process = true;
+
+                    return Ok(StatefulStreamResult::Ready(Some(batch)));
+                }
+
+                let buffered_batch = buffered_data.batch();
+                let empty_stream_batch =
+                    RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+                let buffered_chunk_ref = buffered_indices.slice(start_idx, 
remaining);
+                let new_buffered_indices = buffered_chunk_ref
+                    .as_any()
+                    .downcast_ref::<UInt64Array>()
+                    .expect("downcast to UInt64Array after slice");
+
+                let streamed_indices: UInt32Array =
+                    (0..new_buffered_indices.len() as u32).collect();
+
+                let batch = build_matched_indices(
+                    Arc::clone(&self.schema),
+                    &empty_stream_batch,
+                    buffered_batch,
+                    streamed_indices,
+                    new_buffered_indices.clone(),
+                )?;
+
+                self.batch_process_state.reset();
+
+                timer.done();
+                self.join_metrics.output_batches.add(1);
+                self.state = PiecewiseMergeJoinStreamState::Completed;
+
+                return Ok(StatefulStreamResult::Ready(Some(batch)));
+            }
+
+            return exec_err!("Batch process state should hold buffered 
indices");
+        }
+
+        let (buffered_indices, streamed_indices) = 
get_final_indices_from_shared_bitmap(
+            &buffered_data.visited_indices_bitmap,
+            self.join_type,
+            true,
+        );
+
+        // If the output indices is larger than the limit for the incremental 
batching then
+        // proceed to outputting all matches up to that index, return batch, 
and the matching
+        // will start next on the updated index (`process_rest`)
+        if buffered_indices.len() > self.batch_size {
+            let buffered_batch = buffered_data.batch();
+            let empty_stream_batch =
+                RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+            let indices_chunk_ref = buffered_indices
+                .slice(self.batch_process_state.start_idx, self.batch_size);
+
+            let indices_chunk = indices_chunk_ref
+                .as_any()
+                .downcast_ref::<UInt64Array>()
+                .expect("downcast to UInt64Array after slice");
+
+            let batch = build_matched_indices(
+                Arc::clone(&self.schema),
+                &empty_stream_batch,
+                buffered_batch,
+                streamed_indices,
+                indices_chunk.clone(),
+            )?;
+
+            self.batch_process_state.buffered_indices = Some(buffered_indices);
+            self.batch_process_state
+                .set_process_rest(Some(self.batch_size));
+            self.batch_process_state.continue_process = true;
+
+            return Ok(StatefulStreamResult::Ready(Some(batch)));
+        }
+
+        let buffered_batch = buffered_data.batch();
+        let empty_stream_batch =
+            RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+        let batch = build_matched_indices(
+            Arc::clone(&self.schema),
+            &empty_stream_batch,
+            buffered_batch,
+            streamed_indices,
+            buffered_indices,
+        )?;
+
+        timer.done();
+        self.join_metrics.output_batches.add(1);
+        self.state = PiecewiseMergeJoinStreamState::Completed;
+
+        Ok(StatefulStreamResult::Ready(Some(batch)))
+    }
+}
+
+// Holds all information for processing incremental output
+struct BatchProcessState {
+    // Used to pick up from the last index on the stream side
+    start_idx: usize,
+    // Used to pick up from the last index on the buffered side
+    pivot: usize,
+    // Tracks the number of rows processed; default starts at 0
+    num_rows: usize,
+    // Processes the rest of the batch
+    process_rest: Option<usize>,
+    // Used to skip fully processing the row
+    not_found: bool,
+    // Signals whether to call `ProcessStreamBatch` again
+    continue_process: bool,
+    // Holding the buffered indices when processing the remaining marked rows.
+    buffered_indices: Option<PrimitiveArray<UInt64Type>>,
+}
+
+impl BatchProcessState {
+    pub fn new() -> Self {
+        Self {
+            start_idx: 0,
+            num_rows: 0,
+            pivot: 0,
+            process_rest: None,
+            not_found: false,
+            continue_process: false,
+            buffered_indices: None,
+        }
+    }
+
+    fn reset(&mut self) {
+        self.start_idx = 0;
+        self.num_rows = 0;
+        self.pivot = 0;
+        self.process_rest = None;
+        self.not_found = false;
+        self.continue_process = false;
+        self.buffered_indices = None;
+    }
+
+    fn pivot(&self) -> usize {
+        self.pivot
+    }
+
+    fn set_pivot(&mut self, pivot: usize) {
+        self.pivot = pivot;
+    }
+
+    fn set_start_idx(&mut self, start_idx: usize) {
+        self.start_idx = start_idx;
+    }
+
+    fn set_rows(&mut self, num_rows: usize) {
+        self.num_rows = num_rows;
+    }
+
+    fn set_process_rest(&mut self, process_rest: Option<usize>) {
+        self.process_rest = process_rest;
+    }
+}
+
+impl Stream for ClassicPWMJStream {
+    type Item = Result<RecordBatch>;
+
+    fn poll_next(
+        mut self: std::pin::Pin<&mut Self>,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Option<Self::Item>> {
+        self.poll_next_impl(cx)
+    }
+}
+
+// For Left, Right, Full, and Inner joins, incoming stream batches will 
already be sorted.
+#[allow(clippy::too_many_arguments)]
+fn resolve_classic_join(

Review Comment:
   I found the implementation of this function is quite hard to understand, is 
it possible to structure this way:
   ```
   // Materialize the result when possible
   if batch_process_state.has_ready_batch() {
       return Ok(batch_process_state.finish());
   }
   // Else advancing the stream/buffer side index, and put the matched indices 
into `batch_process_state` for it to materialize incrementally later
   // ...
   ```



##########
datafusion/physical-plan/src/joins/piecewise_merge_join/classic_join.rs:
##########
@@ -0,0 +1,1471 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements.  See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership.  The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License.  You may obtain a copy of the License at
+//
+//   http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied.  See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+//! Stream Implementation for PiecewiseMergeJoin's Classic Join (Left, Right, 
Full, Inner)
+
+use arrow::array::{
+    new_null_array, Array, PrimitiveArray, PrimitiveBuilder, 
RecordBatchOptions,
+};
+use arrow::compute::take;
+use arrow::datatypes::{UInt32Type, UInt64Type};
+use arrow::{
+    array::{
+        ArrayRef, RecordBatch, UInt32Array, UInt32Builder, UInt64Array, 
UInt64Builder,
+    },
+    compute::{sort_to_indices, take_record_batch},
+};
+use arrow_schema::{ArrowError, Schema, SchemaRef, SortOptions};
+use datafusion_common::NullEquality;
+use datafusion_common::{exec_err, internal_err, Result};
+use datafusion_execution::{RecordBatchStream, SendableRecordBatchStream};
+use datafusion_expr::{JoinType, Operator};
+use datafusion_physical_expr::PhysicalExprRef;
+use futures::{Stream, StreamExt};
+use std::{cmp::Ordering, task::ready};
+use std::{sync::Arc, task::Poll};
+
+use crate::handle_state;
+use crate::joins::piecewise_merge_join::exec::{BufferedSide, 
BufferedSideReadyState};
+use crate::joins::piecewise_merge_join::utils::need_produce_result_in_final;
+use crate::joins::utils::{compare_join_arrays, 
get_final_indices_from_shared_bitmap};
+use crate::joins::utils::{BuildProbeJoinMetrics, StatefulStreamResult};
+pub(super) enum PiecewiseMergeJoinStreamState {
+    WaitBufferedSide,
+    FetchStreamBatch,
+    ProcessStreamBatch(StreamedBatch),
+    ExhaustedStreamSide,
+    Completed,
+}
+
+impl PiecewiseMergeJoinStreamState {
+    // Grab mutable reference to the current stream batch
+    fn try_as_process_stream_batch_mut(&mut self) -> Result<&mut 
StreamedBatch> {
+        match self {
+            PiecewiseMergeJoinStreamState::ProcessStreamBatch(state) => 
Ok(state),
+            _ => internal_err!("Expected streamed batch in StreamBatch"),
+        }
+    }
+}
+
+pub(super) struct StreamedBatch {
+    pub batch: RecordBatch,
+    values: Vec<ArrayRef>,
+}
+
+impl StreamedBatch {
+    #[allow(dead_code)]
+    fn new(batch: RecordBatch, values: Vec<ArrayRef>) -> Self {
+        Self { batch, values }
+    }
+
+    fn values(&self) -> &Vec<ArrayRef> {
+        &self.values
+    }
+}
+
+pub(super) struct ClassicPWMJStream {
+    // Output schema of the `PiecewiseMergeJoin`
+    pub schema: Arc<Schema>,
+
+    // Physical expression that is evaluated on the streamed side
+    // We do not need on_buffered as this is already evaluated when
+    // creating the buffered side which happens before initializing
+    // `PiecewiseMergeJoinStream`
+    pub on_streamed: PhysicalExprRef,
+    // Type of join
+    pub join_type: JoinType,
+    // Comparison operator
+    pub operator: Operator,
+    // Streamed batch
+    pub streamed: SendableRecordBatchStream,
+    // Streamed schema
+    streamed_schema: SchemaRef,
+    // Buffered side data
+    buffered_side: BufferedSide,
+    // Tracks the state of the `PiecewiseMergeJoin`
+    state: PiecewiseMergeJoinStreamState,
+    // Sort option for buffered and streamed side (specifies whether
+    // the sort is ascending or descending)
+    sort_option: SortOptions,
+    // Metrics for build + probe joins
+    join_metrics: BuildProbeJoinMetrics,
+    // Tracking incremental state for emitting record batches
+    batch_process_state: BatchProcessState,
+    // Creates batch size
+    batch_size: usize,
+}
+
+impl RecordBatchStream for ClassicPWMJStream {
+    fn schema(&self) -> SchemaRef {
+        Arc::clone(&self.schema)
+    }
+}
+
+// `PiecewiseMergeJoinStreamState` is separated into `WaitBufferedSide`, 
`FetchStreamBatch`,
+// `ProcessStreamBatch`, `ExhaustedStreamSide` and `Completed`.
+//
+// Classic Joins
+//  1. `WaitBufferedSide` - Load in the buffered side data into memory.
+//  2. `FetchStreamBatch` -  Fetch + sort incoming stream batches. We switch 
the state to
+//      `ExhaustedStreamBatch` once stream batches are exhausted.
+//  3. `ProcessStreamBatch` - Compare stream batch row values against the 
buffered side data.
+//  4. `ExhaustedStreamBatch` - If the join type is Left or Inner we will 
return state as
+//      `Completed` however for Full and Right we will need to process the 
matched/unmatched rows.
+impl ClassicPWMJStream {
+    // Creates a new `PiecewiseMergeJoinStream` instance
+    #[allow(clippy::too_many_arguments)]
+    pub fn try_new(
+        schema: Arc<Schema>,
+        on_streamed: PhysicalExprRef,
+        join_type: JoinType,
+        operator: Operator,
+        streamed: SendableRecordBatchStream,
+        buffered_side: BufferedSide,
+        state: PiecewiseMergeJoinStreamState,
+        sort_option: SortOptions,
+        join_metrics: BuildProbeJoinMetrics,
+        batch_size: usize,
+    ) -> Self {
+        let streamed_schema = streamed.schema();
+        Self {
+            schema,
+            on_streamed,
+            join_type,
+            operator,
+            streamed_schema,
+            streamed,
+            buffered_side,
+            state,
+            sort_option,
+            join_metrics,
+            batch_process_state: BatchProcessState::new(),
+            batch_size,
+        }
+    }
+
+    fn poll_next_impl(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Option<Result<RecordBatch>>> {
+        loop {
+            return match self.state {
+                PiecewiseMergeJoinStreamState::WaitBufferedSide => {
+                    handle_state!(ready!(self.collect_buffered_side(cx)))
+                }
+                PiecewiseMergeJoinStreamState::FetchStreamBatch => {
+                    handle_state!(ready!(self.fetch_stream_batch(cx)))
+                }
+                PiecewiseMergeJoinStreamState::ProcessStreamBatch(_) => {
+                    handle_state!(self.process_stream_batch())
+                }
+                PiecewiseMergeJoinStreamState::ExhaustedStreamSide => {
+                    handle_state!(self.process_unmatched_buffered_batch())
+                }
+                PiecewiseMergeJoinStreamState::Completed => Poll::Ready(None),
+            };
+        }
+    }
+
+    // Collects buffered side data
+    fn collect_buffered_side(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Result<StatefulStreamResult<Option<RecordBatch>>>> {
+        let build_timer = self.join_metrics.build_time.timer();
+        let buffered_data = ready!(self
+            .buffered_side
+            .try_as_initial_mut()?
+            .buffered_fut
+            .get_shared(cx))?;
+        build_timer.done();
+
+        // We will start fetching stream batches for classic joins
+        self.state = PiecewiseMergeJoinStreamState::FetchStreamBatch;
+
+        self.buffered_side =
+            BufferedSide::Ready(BufferedSideReadyState { buffered_data });
+
+        Poll::Ready(Ok(StatefulStreamResult::Continue))
+    }
+
+    // Fetches incoming stream batches
+    fn fetch_stream_batch(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Result<StatefulStreamResult<Option<RecordBatch>>>> {
+        match ready!(self.streamed.poll_next_unpin(cx)) {
+            None => {
+                self.state = 
PiecewiseMergeJoinStreamState::ExhaustedStreamSide;
+            }
+            Some(Ok(batch)) => {
+                // Evaluate the streamed physical expression on the stream 
batch
+                let stream_values: ArrayRef = self
+                    .on_streamed
+                    .evaluate(&batch)?
+                    .into_array(batch.num_rows())?;
+
+                self.join_metrics.input_batches.add(1);
+                self.join_metrics.input_rows.add(batch.num_rows());
+
+                // Sort stream values and change the streamed record batch 
accordingly
+                let indices = sort_to_indices(
+                    stream_values.as_ref(),
+                    Some(self.sort_option),
+                    None,
+                )?;
+                let stream_batch = take_record_batch(&batch, &indices)?;
+                let stream_values = take(stream_values.as_ref(), &indices, 
None)?;
+
+                self.state =
+                    
PiecewiseMergeJoinStreamState::ProcessStreamBatch(StreamedBatch {
+                        batch: stream_batch,
+                        values: vec![stream_values],
+                    });
+            }
+            Some(Err(err)) => return Poll::Ready(Err(err)),
+        };
+
+        Poll::Ready(Ok(StatefulStreamResult::Continue))
+    }
+
+    // Only classic join will call. This function will process stream batches 
and evaluate against
+    // the buffered side data.
+    fn process_stream_batch(
+        &mut self,
+    ) -> Result<StatefulStreamResult<Option<RecordBatch>>> {
+        let buffered_side = self.buffered_side.try_as_ready_mut()?;
+        let stream_batch = self.state.try_as_process_stream_batch_mut()?;
+
+        let batch = resolve_classic_join(
+            buffered_side,
+            stream_batch,
+            Arc::clone(&self.schema),
+            self.operator,
+            self.sort_option,
+            self.join_type,
+            &mut self.batch_process_state,
+            self.batch_size,
+        )?;
+
+        if self.batch_process_state.continue_process {
+            return Ok(StatefulStreamResult::Ready(Some(batch)));
+        }
+
+        self.state = PiecewiseMergeJoinStreamState::FetchStreamBatch;
+        Ok(StatefulStreamResult::Ready(Some(batch)))
+    }
+
+    // Process remaining unmatched rows
+    fn process_unmatched_buffered_batch(
+        &mut self,
+    ) -> Result<StatefulStreamResult<Option<RecordBatch>>> {
+        // Return early for `JoinType::Right` and `JoinType::Inner`
+        if matches!(self.join_type, JoinType::Right | JoinType::Inner) {
+            self.state = PiecewiseMergeJoinStreamState::Completed;
+            return Ok(StatefulStreamResult::Ready(None));
+        }
+
+        let timer = self.join_metrics.join_time.timer();
+
+        let buffered_data =
+            
Arc::clone(&self.buffered_side.try_as_ready().unwrap().buffered_data);
+
+        // Check if the same batch needs to be checked for values again
+        if let Some(start_idx) = self.batch_process_state.process_rest {
+            if let Some(buffered_indices) = 
&self.batch_process_state.buffered_indices {
+                let remaining = buffered_indices.len() - start_idx;
+
+                // Branch into this and return value if there are more rows to 
deal with
+                if remaining > self.batch_size {
+                    let buffered_batch = buffered_data.batch();
+                    let empty_stream_batch =
+                        
RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+                    let buffered_chunk_ref =
+                        buffered_indices.slice(start_idx, self.batch_size);
+                    let new_buffered_indices = buffered_chunk_ref
+                        .as_any()
+                        .downcast_ref::<UInt64Array>()
+                        .expect("downcast to UInt64Array after slice");
+
+                    let streamed_indices: UInt32Array =
+                        (0..new_buffered_indices.len() as u32).collect();
+
+                    let batch = build_matched_indices(
+                        Arc::clone(&self.schema),
+                        &empty_stream_batch,
+                        buffered_batch,
+                        streamed_indices,
+                        new_buffered_indices.clone(),
+                    )?;
+
+                    self.batch_process_state
+                        .set_process_rest(Some(start_idx + self.batch_size));
+                    self.batch_process_state.continue_process = true;
+
+                    return Ok(StatefulStreamResult::Ready(Some(batch)));
+                }
+
+                let buffered_batch = buffered_data.batch();
+                let empty_stream_batch =
+                    RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+                let buffered_chunk_ref = buffered_indices.slice(start_idx, 
remaining);
+                let new_buffered_indices = buffered_chunk_ref
+                    .as_any()
+                    .downcast_ref::<UInt64Array>()
+                    .expect("downcast to UInt64Array after slice");
+
+                let streamed_indices: UInt32Array =
+                    (0..new_buffered_indices.len() as u32).collect();
+
+                let batch = build_matched_indices(
+                    Arc::clone(&self.schema),
+                    &empty_stream_batch,
+                    buffered_batch,
+                    streamed_indices,
+                    new_buffered_indices.clone(),
+                )?;
+
+                self.batch_process_state.reset();
+
+                timer.done();
+                self.join_metrics.output_batches.add(1);
+                self.state = PiecewiseMergeJoinStreamState::Completed;
+
+                return Ok(StatefulStreamResult::Ready(Some(batch)));
+            }
+
+            return exec_err!("Batch process state should hold buffered 
indices");
+        }
+
+        let (buffered_indices, streamed_indices) = 
get_final_indices_from_shared_bitmap(
+            &buffered_data.visited_indices_bitmap,
+            self.join_type,
+            true,
+        );
+
+        // If the output indices is larger than the limit for the incremental 
batching then
+        // proceed to outputting all matches up to that index, return batch, 
and the matching
+        // will start next on the updated index (`process_rest`)
+        if buffered_indices.len() > self.batch_size {
+            let buffered_batch = buffered_data.batch();
+            let empty_stream_batch =
+                RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+            let indices_chunk_ref = buffered_indices
+                .slice(self.batch_process_state.start_idx, self.batch_size);
+
+            let indices_chunk = indices_chunk_ref
+                .as_any()
+                .downcast_ref::<UInt64Array>()
+                .expect("downcast to UInt64Array after slice");
+
+            let batch = build_matched_indices(
+                Arc::clone(&self.schema),
+                &empty_stream_batch,
+                buffered_batch,
+                streamed_indices,
+                indices_chunk.clone(),
+            )?;
+
+            self.batch_process_state.buffered_indices = Some(buffered_indices);
+            self.batch_process_state
+                .set_process_rest(Some(self.batch_size));
+            self.batch_process_state.continue_process = true;
+
+            return Ok(StatefulStreamResult::Ready(Some(batch)));
+        }
+
+        let buffered_batch = buffered_data.batch();
+        let empty_stream_batch =
+            RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+        let batch = build_matched_indices(
+            Arc::clone(&self.schema),
+            &empty_stream_batch,
+            buffered_batch,
+            streamed_indices,
+            buffered_indices,
+        )?;
+
+        timer.done();
+        self.join_metrics.output_batches.add(1);
+        self.state = PiecewiseMergeJoinStreamState::Completed;
+
+        Ok(StatefulStreamResult::Ready(Some(batch)))
+    }
+}
+
+// Holds all information for processing incremental output

Review Comment:
   I took a quick glance, it seem possible to cut big output, and output one by 
one according to `batch_size`. However it does not support combining/coalescing 
small batches to `batch_size`?



##########
datafusion/physical-plan/src/joins/piecewise_merge_join/classic_join.rs:
##########
@@ -0,0 +1,1471 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements.  See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership.  The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License.  You may obtain a copy of the License at
+//
+//   http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied.  See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+//! Stream Implementation for PiecewiseMergeJoin's Classic Join (Left, Right, 
Full, Inner)
+
+use arrow::array::{
+    new_null_array, Array, PrimitiveArray, PrimitiveBuilder, 
RecordBatchOptions,
+};
+use arrow::compute::take;
+use arrow::datatypes::{UInt32Type, UInt64Type};
+use arrow::{
+    array::{
+        ArrayRef, RecordBatch, UInt32Array, UInt32Builder, UInt64Array, 
UInt64Builder,
+    },
+    compute::{sort_to_indices, take_record_batch},
+};
+use arrow_schema::{ArrowError, Schema, SchemaRef, SortOptions};
+use datafusion_common::NullEquality;
+use datafusion_common::{exec_err, internal_err, Result};
+use datafusion_execution::{RecordBatchStream, SendableRecordBatchStream};
+use datafusion_expr::{JoinType, Operator};
+use datafusion_physical_expr::PhysicalExprRef;
+use futures::{Stream, StreamExt};
+use std::{cmp::Ordering, task::ready};
+use std::{sync::Arc, task::Poll};
+
+use crate::handle_state;
+use crate::joins::piecewise_merge_join::exec::{BufferedSide, 
BufferedSideReadyState};
+use crate::joins::piecewise_merge_join::utils::need_produce_result_in_final;
+use crate::joins::utils::{compare_join_arrays, 
get_final_indices_from_shared_bitmap};
+use crate::joins::utils::{BuildProbeJoinMetrics, StatefulStreamResult};
+pub(super) enum PiecewiseMergeJoinStreamState {
+    WaitBufferedSide,
+    FetchStreamBatch,
+    ProcessStreamBatch(StreamedBatch),
+    ExhaustedStreamSide,
+    Completed,
+}
+
+impl PiecewiseMergeJoinStreamState {
+    // Grab mutable reference to the current stream batch
+    fn try_as_process_stream_batch_mut(&mut self) -> Result<&mut 
StreamedBatch> {
+        match self {
+            PiecewiseMergeJoinStreamState::ProcessStreamBatch(state) => 
Ok(state),
+            _ => internal_err!("Expected streamed batch in StreamBatch"),
+        }
+    }
+}
+
+pub(super) struct StreamedBatch {
+    pub batch: RecordBatch,
+    values: Vec<ArrayRef>,
+}
+
+impl StreamedBatch {
+    #[allow(dead_code)]
+    fn new(batch: RecordBatch, values: Vec<ArrayRef>) -> Self {
+        Self { batch, values }
+    }
+
+    fn values(&self) -> &Vec<ArrayRef> {
+        &self.values
+    }
+}
+
+pub(super) struct ClassicPWMJStream {
+    // Output schema of the `PiecewiseMergeJoin`
+    pub schema: Arc<Schema>,
+
+    // Physical expression that is evaluated on the streamed side
+    // We do not need on_buffered as this is already evaluated when
+    // creating the buffered side which happens before initializing
+    // `PiecewiseMergeJoinStream`
+    pub on_streamed: PhysicalExprRef,
+    // Type of join
+    pub join_type: JoinType,
+    // Comparison operator
+    pub operator: Operator,
+    // Streamed batch
+    pub streamed: SendableRecordBatchStream,
+    // Streamed schema
+    streamed_schema: SchemaRef,
+    // Buffered side data
+    buffered_side: BufferedSide,
+    // Tracks the state of the `PiecewiseMergeJoin`
+    state: PiecewiseMergeJoinStreamState,
+    // Sort option for buffered and streamed side (specifies whether
+    // the sort is ascending or descending)
+    sort_option: SortOptions,
+    // Metrics for build + probe joins
+    join_metrics: BuildProbeJoinMetrics,
+    // Tracking incremental state for emitting record batches
+    batch_process_state: BatchProcessState,
+    // Creates batch size
+    batch_size: usize,
+}
+
+impl RecordBatchStream for ClassicPWMJStream {
+    fn schema(&self) -> SchemaRef {
+        Arc::clone(&self.schema)
+    }
+}
+
+// `PiecewiseMergeJoinStreamState` is separated into `WaitBufferedSide`, 
`FetchStreamBatch`,
+// `ProcessStreamBatch`, `ExhaustedStreamSide` and `Completed`.
+//
+// Classic Joins
+//  1. `WaitBufferedSide` - Load in the buffered side data into memory.
+//  2. `FetchStreamBatch` -  Fetch + sort incoming stream batches. We switch 
the state to
+//      `ExhaustedStreamBatch` once stream batches are exhausted.
+//  3. `ProcessStreamBatch` - Compare stream batch row values against the 
buffered side data.
+//  4. `ExhaustedStreamBatch` - If the join type is Left or Inner we will 
return state as
+//      `Completed` however for Full and Right we will need to process the 
matched/unmatched rows.
+impl ClassicPWMJStream {
+    // Creates a new `PiecewiseMergeJoinStream` instance
+    #[allow(clippy::too_many_arguments)]
+    pub fn try_new(
+        schema: Arc<Schema>,
+        on_streamed: PhysicalExprRef,
+        join_type: JoinType,
+        operator: Operator,
+        streamed: SendableRecordBatchStream,
+        buffered_side: BufferedSide,
+        state: PiecewiseMergeJoinStreamState,
+        sort_option: SortOptions,
+        join_metrics: BuildProbeJoinMetrics,
+        batch_size: usize,
+    ) -> Self {
+        let streamed_schema = streamed.schema();
+        Self {
+            schema,
+            on_streamed,
+            join_type,
+            operator,
+            streamed_schema,
+            streamed,
+            buffered_side,
+            state,
+            sort_option,
+            join_metrics,
+            batch_process_state: BatchProcessState::new(),
+            batch_size,
+        }
+    }
+
+    fn poll_next_impl(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Option<Result<RecordBatch>>> {
+        loop {
+            return match self.state {
+                PiecewiseMergeJoinStreamState::WaitBufferedSide => {
+                    handle_state!(ready!(self.collect_buffered_side(cx)))
+                }
+                PiecewiseMergeJoinStreamState::FetchStreamBatch => {
+                    handle_state!(ready!(self.fetch_stream_batch(cx)))
+                }
+                PiecewiseMergeJoinStreamState::ProcessStreamBatch(_) => {
+                    handle_state!(self.process_stream_batch())
+                }
+                PiecewiseMergeJoinStreamState::ExhaustedStreamSide => {
+                    handle_state!(self.process_unmatched_buffered_batch())
+                }
+                PiecewiseMergeJoinStreamState::Completed => Poll::Ready(None),
+            };
+        }
+    }
+
+    // Collects buffered side data
+    fn collect_buffered_side(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Result<StatefulStreamResult<Option<RecordBatch>>>> {
+        let build_timer = self.join_metrics.build_time.timer();
+        let buffered_data = ready!(self
+            .buffered_side
+            .try_as_initial_mut()?
+            .buffered_fut
+            .get_shared(cx))?;
+        build_timer.done();
+
+        // We will start fetching stream batches for classic joins
+        self.state = PiecewiseMergeJoinStreamState::FetchStreamBatch;
+
+        self.buffered_side =
+            BufferedSide::Ready(BufferedSideReadyState { buffered_data });
+
+        Poll::Ready(Ok(StatefulStreamResult::Continue))
+    }
+
+    // Fetches incoming stream batches
+    fn fetch_stream_batch(
+        &mut self,
+        cx: &mut std::task::Context<'_>,
+    ) -> Poll<Result<StatefulStreamResult<Option<RecordBatch>>>> {
+        match ready!(self.streamed.poll_next_unpin(cx)) {
+            None => {
+                self.state = 
PiecewiseMergeJoinStreamState::ExhaustedStreamSide;
+            }
+            Some(Ok(batch)) => {
+                // Evaluate the streamed physical expression on the stream 
batch
+                let stream_values: ArrayRef = self
+                    .on_streamed
+                    .evaluate(&batch)?
+                    .into_array(batch.num_rows())?;
+
+                self.join_metrics.input_batches.add(1);
+                self.join_metrics.input_rows.add(batch.num_rows());
+
+                // Sort stream values and change the streamed record batch 
accordingly
+                let indices = sort_to_indices(
+                    stream_values.as_ref(),
+                    Some(self.sort_option),
+                    None,
+                )?;
+                let stream_batch = take_record_batch(&batch, &indices)?;
+                let stream_values = take(stream_values.as_ref(), &indices, 
None)?;
+
+                self.state =
+                    
PiecewiseMergeJoinStreamState::ProcessStreamBatch(StreamedBatch {
+                        batch: stream_batch,
+                        values: vec![stream_values],
+                    });
+            }
+            Some(Err(err)) => return Poll::Ready(Err(err)),
+        };
+
+        Poll::Ready(Ok(StatefulStreamResult::Continue))
+    }
+
+    // Only classic join will call. This function will process stream batches 
and evaluate against
+    // the buffered side data.
+    fn process_stream_batch(
+        &mut self,
+    ) -> Result<StatefulStreamResult<Option<RecordBatch>>> {
+        let buffered_side = self.buffered_side.try_as_ready_mut()?;
+        let stream_batch = self.state.try_as_process_stream_batch_mut()?;
+
+        let batch = resolve_classic_join(
+            buffered_side,
+            stream_batch,
+            Arc::clone(&self.schema),
+            self.operator,
+            self.sort_option,
+            self.join_type,
+            &mut self.batch_process_state,
+            self.batch_size,
+        )?;
+
+        if self.batch_process_state.continue_process {
+            return Ok(StatefulStreamResult::Ready(Some(batch)));
+        }
+
+        self.state = PiecewiseMergeJoinStreamState::FetchStreamBatch;
+        Ok(StatefulStreamResult::Ready(Some(batch)))
+    }
+
+    // Process remaining unmatched rows
+    fn process_unmatched_buffered_batch(
+        &mut self,
+    ) -> Result<StatefulStreamResult<Option<RecordBatch>>> {
+        // Return early for `JoinType::Right` and `JoinType::Inner`
+        if matches!(self.join_type, JoinType::Right | JoinType::Inner) {
+            self.state = PiecewiseMergeJoinStreamState::Completed;
+            return Ok(StatefulStreamResult::Ready(None));
+        }
+
+        let timer = self.join_metrics.join_time.timer();
+
+        let buffered_data =
+            
Arc::clone(&self.buffered_side.try_as_ready().unwrap().buffered_data);
+
+        // Check if the same batch needs to be checked for values again
+        if let Some(start_idx) = self.batch_process_state.process_rest {
+            if let Some(buffered_indices) = 
&self.batch_process_state.buffered_indices {
+                let remaining = buffered_indices.len() - start_idx;
+
+                // Branch into this and return value if there are more rows to 
deal with
+                if remaining > self.batch_size {
+                    let buffered_batch = buffered_data.batch();
+                    let empty_stream_batch =
+                        
RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+                    let buffered_chunk_ref =
+                        buffered_indices.slice(start_idx, self.batch_size);
+                    let new_buffered_indices = buffered_chunk_ref
+                        .as_any()
+                        .downcast_ref::<UInt64Array>()
+                        .expect("downcast to UInt64Array after slice");
+
+                    let streamed_indices: UInt32Array =
+                        (0..new_buffered_indices.len() as u32).collect();
+
+                    let batch = build_matched_indices(
+                        Arc::clone(&self.schema),
+                        &empty_stream_batch,
+                        buffered_batch,
+                        streamed_indices,
+                        new_buffered_indices.clone(),
+                    )?;
+
+                    self.batch_process_state
+                        .set_process_rest(Some(start_idx + self.batch_size));
+                    self.batch_process_state.continue_process = true;
+
+                    return Ok(StatefulStreamResult::Ready(Some(batch)));
+                }
+
+                let buffered_batch = buffered_data.batch();
+                let empty_stream_batch =
+                    RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+                let buffered_chunk_ref = buffered_indices.slice(start_idx, 
remaining);
+                let new_buffered_indices = buffered_chunk_ref
+                    .as_any()
+                    .downcast_ref::<UInt64Array>()
+                    .expect("downcast to UInt64Array after slice");
+
+                let streamed_indices: UInt32Array =
+                    (0..new_buffered_indices.len() as u32).collect();
+
+                let batch = build_matched_indices(
+                    Arc::clone(&self.schema),
+                    &empty_stream_batch,
+                    buffered_batch,
+                    streamed_indices,
+                    new_buffered_indices.clone(),
+                )?;
+
+                self.batch_process_state.reset();
+
+                timer.done();
+                self.join_metrics.output_batches.add(1);
+                self.state = PiecewiseMergeJoinStreamState::Completed;
+
+                return Ok(StatefulStreamResult::Ready(Some(batch)));
+            }
+
+            return exec_err!("Batch process state should hold buffered 
indices");
+        }
+
+        let (buffered_indices, streamed_indices) = 
get_final_indices_from_shared_bitmap(
+            &buffered_data.visited_indices_bitmap,
+            self.join_type,
+            true,
+        );
+
+        // If the output indices is larger than the limit for the incremental 
batching then
+        // proceed to outputting all matches up to that index, return batch, 
and the matching
+        // will start next on the updated index (`process_rest`)
+        if buffered_indices.len() > self.batch_size {
+            let buffered_batch = buffered_data.batch();
+            let empty_stream_batch =
+                RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+            let indices_chunk_ref = buffered_indices
+                .slice(self.batch_process_state.start_idx, self.batch_size);
+
+            let indices_chunk = indices_chunk_ref
+                .as_any()
+                .downcast_ref::<UInt64Array>()
+                .expect("downcast to UInt64Array after slice");
+
+            let batch = build_matched_indices(
+                Arc::clone(&self.schema),
+                &empty_stream_batch,
+                buffered_batch,
+                streamed_indices,
+                indices_chunk.clone(),
+            )?;
+
+            self.batch_process_state.buffered_indices = Some(buffered_indices);
+            self.batch_process_state
+                .set_process_rest(Some(self.batch_size));
+            self.batch_process_state.continue_process = true;
+
+            return Ok(StatefulStreamResult::Ready(Some(batch)));
+        }
+
+        let buffered_batch = buffered_data.batch();
+        let empty_stream_batch =
+            RecordBatch::new_empty(Arc::clone(&self.streamed_schema));
+
+        let batch = build_matched_indices(
+            Arc::clone(&self.schema),
+            &empty_stream_batch,
+            buffered_batch,
+            streamed_indices,
+            buffered_indices,
+        )?;
+
+        timer.done();
+        self.join_metrics.output_batches.add(1);
+        self.state = PiecewiseMergeJoinStreamState::Completed;
+
+        Ok(StatefulStreamResult::Ready(Some(batch)))
+    }
+}
+
+// Holds all information for processing incremental output

Review Comment:
   Could you add more doc for how this struct work? Maybe with a walkthrough on 
simple examples.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: github-unsubscr...@datafusion.apache.org
For additional commands, e-mail: github-h...@datafusion.apache.org

Reply via email to