andygrove opened a new issue, #3097:
URL: https://github.com/apache/datafusion-comet/issues/3097

   ## What is the problem the feature request solves?
   
   > **Note:** This issue was generated with AI assistance. The specification 
details have been extracted from Spark documentation and may need verification.
   
   Comet does not currently support the Spark `divide_ym_interval` function, 
causing queries using this function to fall back to Spark's JVM execution 
instead of running natively on DataFusion.
   
   The `DivideYMInterval` expression divides a year-month interval by a numeric 
value, returning a new year-month interval. This operation supports division by 
various numeric types including integral, decimal, and fractional types, with 
proper rounding using the HALF_UP rounding mode.
   
   Supporting this expression would allow more Spark workloads to benefit from 
Comet's native acceleration.
   
   ## Describe the potential solution
   
   ### Spark Specification
   
   **Syntax:**
   ```sql
   year_month_interval / numeric_value
   ```
   
   **Arguments:**
   | Argument | Type | Description |
   |----------|------|-------------|
   | interval | YearMonthIntervalType | The year-month interval to be divided |
   | num | NumericType | The numeric divisor (IntegralType, DecimalType, or 
FractionalType) |
   
   **Return Type:** Returns `YearMonthIntervalType()` - a year-month interval 
with the same structure as the input interval.
   
   **Supported Data Types:**
   **Left operand (interval):**
   - YearMonthIntervalType
   
   **Right operand (num):**
   - LongType
   - IntegralType (IntegerType, ShortType, ByteType)
   - DecimalType
   - FractionalType (DoubleType, FloatType)
   
   **Edge Cases:**
   - **Null handling**: Expression is null-intolerant - returns null if either 
operand is null
   - **Divide by zero**: Throws `QueryExecutionErrors` when divisor is zero
   - **Overflow behavior**: 
     - Checks for `Int.MinValue / -1` overflow condition
     - Throws `QueryExecutionErrors.overflowInIntegralDivideError` on overflow
     - Uses `intValueExact()` for Decimal results to ensure no precision loss
   - **Rounding**: All division operations use `RoundingMode.HALF_UP` for 
consistent behavior
   
   **Examples:**
   ```sql
   -- Divide a 2-year 6-month interval by 2
   SELECT INTERVAL '2-6' YEAR TO MONTH / 2;
   -- Result: INTERVAL '1-3' YEAR TO MONTH
   
   -- Divide by decimal value
   SELECT INTERVAL '5-0' YEAR TO MONTH / 2.5;
   -- Result: INTERVAL '2-0' YEAR TO MONTH
   ```
   
   ```scala
   // DataFrame API usage
   import org.apache.spark.sql.functions._
   
   df.select(col("year_month_interval") / lit(3))
   
   // Using expression directly
   val divideExpr = DivideYMInterval(
     interval = col("ym_interval").expr,
     num = lit(2).expr
   )
   ```
   
   ### Implementation Approach
   
   See the [Comet guide on adding new 
expressions](https://datafusion.apache.org/comet/contributor-guide/adding_a_new_expression.html)
 for detailed instructions.
   
   1. **Scala Serde**: Add expression handler in 
`spark/src/main/scala/org/apache/comet/serde/`
   2. **Register**: Add to appropriate map in `QueryPlanSerde.scala`
   3. **Protobuf**: Add message type in `native/proto/src/proto/expr.proto` if 
needed
   4. **Rust**: Implement in `native/spark-expr/src/` (check if DataFusion has 
built-in support first)
   
   
   ## Additional context
   
   **Difficulty:** Medium
   **Spark Expression Class:** 
`org.apache.spark.sql.catalyst.expressions.DivideYMInterval`
   
   **Related:**
   - `MultiplyYMInterval` - Multiplication of year-month intervals
   - `DivideDTInterval` - Division of day-time intervals  
   - `ExtractIntervalYears` - Extracting years from intervals
   - `ExtractIntervalMonths` - Extracting months from intervals
   
   ---
   *This issue was auto-generated from Spark reference documentation.*
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to