andygrove opened a new issue, #3109:
URL: https://github.com/apache/datafusion-comet/issues/3109
## What is the problem the feature request solves?
> **Note:** This issue was generated with AI assistance. The specification
details have been extracted from Spark documentation and may need verification.
Comet does not currently support the Spark `parse_to_timestamp` function,
causing queries using this function to fall back to Spark's JVM execution
instead of running natively on DataFusion.
ParseToTimestamp is a Spark Catalyst expression that converts string, date,
timestamp, or numeric values to a timestamp data type. It supports optional
format specifications for parsing string inputs and provides timezone-aware
conversion capabilities with configurable error handling behavior.
Supporting this expression would allow more Spark workloads to benefit from
Comet's native acceleration.
## Describe the potential solution
### Spark Specification
**Syntax:**
```sql
to_timestamp(timestamp_str[, format])
```
```scala
// DataFrame API usage
df.select(to_timestamp($"timestamp_column"))
df.select(to_timestamp($"timestamp_column", "yyyy-MM-dd HH:mm:ss"))
```
**Arguments:**
| Argument | Type | Description |
|----------|------|-------------|
| left | Expression | The input expression to convert to timestamp |
| format | Option[Expression] | Optional format string for parsing input |
| dataType | DataType | Target timestamp data type |
| timeZoneId | Option[String] | Optional timezone identifier for conversion |
| failOnError | Boolean | Whether to fail on conversion errors (defaults to
ANSI mode setting) |
**Return Type:** Returns a timestamp data type as specified by the
`dataType` parameter, typically `TimestampType` or `TimestampNTZType`.
**Supported Data Types:**
- StringType with collation support (including trim collation)
- DateType
- TimestampType
- TimestampNTZType
- NumericType (only when target dataType is TimestampType)
**Edge Cases:**
- Null inputs are handled gracefully and typically return null outputs
- Invalid format strings will cause runtime errors when `failOnError` is true
- Unparseable timestamp strings behavior depends on ANSI mode settings
- Numeric inputs are interpreted as seconds since epoch when converting to
TimestampType
- Timezone conversion edge cases (DST transitions) are handled according to
Java timezone rules
**Examples:**
```sql
-- Basic timestamp parsing
SELECT to_timestamp('2016-12-31 00:00:00');
-- With custom format
SELECT to_timestamp('12/31/2016 00:00:00', 'MM/dd/yyyy HH:mm:ss');
-- Converting date to timestamp
SELECT to_timestamp(current_date());
```
```scala
// DataFrame API usage
import org.apache.spark.sql.functions._
// Basic conversion
df.select(to_timestamp($"timestamp_str"))
// With format specification
df.select(to_timestamp($"date_str", "yyyy-MM-dd"))
// Converting numeric epoch seconds
df.select(to_timestamp($"epoch_seconds"))
```
### Implementation Approach
See the [Comet guide on adding new
expressions](https://datafusion.apache.org/comet/contributor-guide/adding_a_new_expression.html)
for detailed instructions.
1. **Scala Serde**: Add expression handler in
`spark/src/main/scala/org/apache/comet/serde/`
2. **Register**: Add to appropriate map in `QueryPlanSerde.scala`
3. **Protobuf**: Add message type in `native/proto/src/proto/expr.proto` if
needed
4. **Rust**: Implement in `native/spark-expr/src/` (check if DataFusion has
built-in support first)
## Additional context
**Difficulty:** Medium
**Spark Expression Class:**
`org.apache.spark.sql.catalyst.expressions.ParseToTimestamp`
**Related:**
- `GetTimestamp` - Underlying expression for formatted parsing
- `Cast` - Underlying expression for unformatted conversion
- `ParseToDate` - Similar expression for date parsing
- `UnixTimestamp` - Converting to Unix timestamp format
---
*This issue was auto-generated from Spark reference documentation.*
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]