andygrove opened a new issue, #3131:
URL: https://github.com/apache/datafusion-comet/issues/3131

   ## What is the problem the feature request solves?
   
   > **Note:** This issue was generated with AI assistance. The specification 
details have been extracted from Spark documentation and may need verification.
   
   Comet does not currently support the Spark `years` function, causing queries 
using this function to fall back to Spark's JVM execution instead of running 
natively on DataFusion.
   
   The `Years` expression is a v2 partition transform that extracts the year 
component from date/timestamp values for partitioning purposes. It converts 
temporal data into integer year values, enabling efficient time-based 
partitioning strategies in Spark SQL tables.
   
   Supporting this expression would allow more Spark workloads to benefit from 
Comet's native acceleration.
   
   ## Describe the potential solution
   
   ### Spark Specification
   
   **Syntax:**
   ```sql
   YEARS(column_name)
   ```
   
   ```scala
   // DataFrame API usage
   Years(col("date_column"))
   ```
   
   **Arguments:**
   | Argument | Type | Description |
   |----------|------|-------------|
   | child | Expression | The input expression, typically a date or timestamp 
column |
   
   **Return Type:** `IntegerType` - Returns the year as an integer value.
   
   **Supported Data Types:**
   - DateType
   - TimestampType
   - TimestampNTZType (timestamp without timezone)
   
   **Edge Cases:**
   - Null handling: Returns null when the input expression is null
   - Invalid dates: Follows Spark's standard date parsing and validation rules
   - Year boundaries: Correctly handles leap years and year transitions
   - Timezone effects: For timestamp inputs, the year extraction respects the 
session timezone setting
   - Historical dates: Supports dates across the full range supported by 
Spark's date types
   
   **Examples:**
   ```sql
   -- Creating a table partitioned by years
   CREATE TABLE events (
     id BIGINT,
     event_time TIMESTAMP,
     data STRING
   ) USING DELTA
   PARTITIONED BY (YEARS(event_time))
   
   -- Query that benefits from partition pruning
   SELECT * FROM events 
   WHERE event_time >= '2023-01-01' AND event_time < '2024-01-01'
   ```
   
   ```scala
   // DataFrame API usage in partition transforms
   import org.apache.spark.sql.catalyst.expressions.Years
   import org.apache.spark.sql.functions.col
   
   // Transform expression for partitioning
   val yearTransform = Years(col("timestamp_col").expr)
   
   // Usage in DataFrameWriter for partitioned writes
   df.write
     .partitionBy("year_partition")
     .option("partitionOverwriteMode", "dynamic")
     .save("/path/to/table")
   ```
   
   ### Implementation Approach
   
   See the [Comet guide on adding new 
expressions](https://datafusion.apache.org/comet/contributor-guide/adding_a_new_expression.html)
 for detailed instructions.
   
   1. **Scala Serde**: Add expression handler in 
`spark/src/main/scala/org/apache/comet/serde/`
   2. **Register**: Add to appropriate map in `QueryPlanSerde.scala`
   3. **Protobuf**: Add message type in `native/proto/src/proto/expr.proto` if 
needed
   4. **Rust**: Implement in `native/spark-expr/src/` (check if DataFusion has 
built-in support first)
   
   
   ## Additional context
   
   **Difficulty:** Medium
   **Spark Expression Class:** `org.apache.spark.sql.catalyst.expressions.Years`
   
   **Related:**
   - `Months` - Monthly partition transform
   - `Days` - Daily partition transform  
   - `Hours` - Hourly partition transform
   - `Bucket` - Hash-based partition transform
   - `PartitionTransformExpression` - Base class for partition transforms
   
   ---
   *This issue was auto-generated from Spark reference documentation.*
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to