andygrove opened a new issue, #3151:
URL: https://github.com/apache/datafusion-comet/issues/3151

   ## What is the problem the feature request solves?
   
   > **Note:** This issue was generated with AI assistance. The specification 
details have been extracted from Spark documentation and may need verification.
   
   Comet does not currently support the Spark `arrays_zip` function, causing 
queries using this function to fall back to Spark's JVM execution instead of 
running natively on DataFusion.
   
   The `ArraysZip` expression combines multiple arrays into a single array of 
structs by transposing elements at corresponding positions. Each resulting 
struct contains fields named "0", "1", "2", etc., with values from the input 
arrays at the same index position.
   
   Supporting this expression would allow more Spark workloads to benefit from 
Comet's native acceleration.
   
   ## Describe the potential solution
   
   ### Spark Specification
   
   **Syntax:**
   ```sql
   arrays_zip(array1, array2, ...)
   ```
   
   **Arguments:**
   | Argument | Type | Description |
   |----------|------|-------------|
   | children | Seq[Expression] | Variable number of array expressions to be 
zipped together |
   | names | Seq[Expression] | Field names for the resulting struct fields 
(typically auto-generated as "0", "1", "2", etc.) |
   
   **Return Type:** Array of structs, where each struct contains fields 
corresponding to elements from input arrays at the same position.
   
   **Supported Data Types:**
   All data types are supported for array elements, including:
   
   - Numeric types (byte, short, int, long, float, double, decimal)
   - String and binary types
   - Boolean type
   - Date and timestamp types
   - Complex types (arrays, maps, structs)
   - Null values
   
   **Edge Cases:**
   - **Null arrays**: If an input array is null, the corresponding field in all 
output structs will be null
   - **Empty arrays**: Empty input arrays contribute null values to all 
positions in the output
   - **Mismatched lengths**: Shorter arrays are padded with nulls; longer 
arrays determine the output length
   - **All empty inputs**: Results in an empty array
   - **Single array input**: Creates array of single-field structs
   
   **Examples:**
   ```sql
   -- Basic usage with arrays of same length
   SELECT arrays_zip(array(1, 2), array(2, 3), array(3, 4));
   -- Result: [{"0":1,"1":2,"2":3},{"0":2,"1":3,"2":4}]
   
   -- Arrays with different lengths
   SELECT arrays_zip(array(1, 2, 3), array('a', 'b'));
   -- Result: [{"0":1,"1":"a"},{"0":2,"1":"b"},{"0":3,"1":null}]
   
   -- With null values
   SELECT arrays_zip(array(1, null, 3), array('x', 'y', 'z'));
   -- Result: [{"0":1,"1":"x"},{"0":null,"1":"y"},{"0":3,"1":"z"}]
   ```
   
   ```scala
   // DataFrame API usage
   import org.apache.spark.sql.functions._
   
   df.select(arrays_zip(col("array1"), col("array2"), col("array3")))
   
   // Using with explode to create rows
   df.select(explode(arrays_zip(col("array1"), col("array2"))))
   ```
   
   ### Implementation Approach
   
   See the [Comet guide on adding new 
expressions](https://datafusion.apache.org/comet/contributor-guide/adding_a_new_expression.html)
 for detailed instructions.
   
   1. **Scala Serde**: Add expression handler in 
`spark/src/main/scala/org/apache/comet/serde/`
   2. **Register**: Add to appropriate map in `QueryPlanSerde.scala`
   3. **Protobuf**: Add message type in `native/proto/src/proto/expr.proto` if 
needed
   4. **Rust**: Implement in `native/spark-expr/src/` (check if DataFusion has 
built-in support first)
   
   
   ## Additional context
   
   **Difficulty:** Medium
   **Spark Expression Class:** 
`org.apache.spark.sql.catalyst.expressions.ArraysZip`
   
   **Related:**
   - `explode()` - Often used with arrays_zip to create rows from zipped arrays
   - `array()` - Creates arrays that can be used as input
   - `struct()` - Creates individual struct values
   - `zip_with()` - Alternative for element-wise array operations with custom 
logic
   
   ---
   *This issue was auto-generated from Spark reference documentation.*
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to