#4950: Typechecking regression
---------------------------------+------------------------------------------
    Reporter:  igloo             |        Owner:              
        Type:  bug               |       Status:  new         
    Priority:  highest           |    Milestone:  7.0.2       
   Component:  Compiler          |      Version:  7.0.1       
    Keywords:                    |     Testcase:              
   Blockedby:                    |   Difficulty:              
          Os:  Unknown/Multiple  |     Blocking:              
Architecture:  Unknown/Multiple  |      Failure:  None/Unknown
---------------------------------+------------------------------------------
 Reduced from `data-category-0.3.1.1`, this module:
 {{{
 {-# LANGUAGE FlexibleContexts, FlexibleInstances, GADTs,
              MultiParamTypeClasses, RankNTypes, ScopedTypeVariables,
              TypeOperators, TypeFamilies, TypeSynonymInstances,
              UndecidableInstances #-}

 module Data.Category.Limit (limitUniv') where

 import Prelude hiding ((.), Functor, product)

 infixl 9 !
 infixr 9 %
 infixr 9 :%
 infixr 8 .

 data Diag :: (* -> * -> *) -> (* -> * -> *) -> *

 type instance Dom (Diag j (~>)) = (~>)
 type instance Cod (Diag j (~>)) = Nat j (~>)
 type instance Diag j (~>) :% a = Const j (~>) a

 type DiagF f = Diag (Dom f) (Cod f)
 type Cone   f n = Nat (Dom f) (Cod f) (ConstF f n) f

 coneVertex :: Cone f n -> Obj (Cod f) n
 coneVertex = undefined

 type family LimitFam j (~>) f :: *
 type Limit f = LimitFam (Dom f) (Cod f) f
 type LimitUniversal f = TerminalUniversal f (DiagF f) (Limit f)

 limitUniversal :: (Cod f ~ (~>))
                => Cone f (Limit f)
                -> (forall n. Cone f n -> n ~> Limit f)
                -> LimitUniversal f
 limitUniversal = undefined

 limit :: LimitUniversal f -> Cone f (Limit f)
 limit = undefined

 class (Category j, Category (~>)) => HasLimits j (~>) where
   limitUniv :: Obj (Nat j (~>)) f -> LimitUniversal f

 type family BinaryProduct ((~>) :: * -> * -> *) x y :: *

 class Category (~>) => HasBinaryProducts (~>) where
   proj2 :: Obj (~>) x -> Obj (~>) y -> BinaryProduct (~>) x y ~> y

 limitUniv' :: forall f n (~>) .
               (Functor f,
                Dom f ~ Discrete (S n),
                Cod f ~ (~>),
                HasLimits (Discrete n) (~>),
                HasBinaryProducts (~>))
            => f -> LimitUniversal f
 limitUniv' f = limitUniversal (Nat undefined f (\z -> unCom $ h z))
 undefined
     where x = f % Z
           y = coneVertex limNext
           limNext = limit luNext
           luNext = limitUniv (natId (Next f))
           h :: Obj (Discrete (S n)) z
             -> Com (ConstF f (LimitFam (Discrete (S n)) (~>) f)) f z
           h Z     = undefined
           h (S n) = Com $ limNext ! n . proj2 x y

 data Z
 data S n

 data Discrete :: * -> * -> * -> * where
   Z :: Discrete (S n) Z Z
   S :: Discrete n a a -> Discrete (S n) (S a) (S a)

 instance Category (Discrete Z) where
   src = undefined
   tgt = undefined
   (.) = undefined

 instance Category (Discrete n) => Category (Discrete (S n)) where
   src = undefined
   tgt = undefined
   (.) = undefined

 type family PredDiscrete (c :: * -> * -> *) :: * -> * -> *
 type instance PredDiscrete (Discrete (S n)) = Discrete n

 data Next :: * -> * where
   Next :: (Functor f, Dom f ~ Discrete (S n)) => f -> Next f

 type instance Dom (Next f) = PredDiscrete (Dom f)
 type instance Cod (Next f) = Cod f
 type instance Next f :% a = f :% S a

 instance (Functor f, Category (PredDiscrete (Dom f))) => Functor (Next f)
 where
   Next f % Z     = f % S Z
   Next f % (S a) = f % S (S a)

 data Nat :: (* -> * -> *) -> (* -> * -> *) -> * -> * -> * where
   Nat :: (Functor f, Functor g, c ~ Dom f, c ~ Dom g, d ~ Cod f, d ~ Cod
 g)
     => f -> g -> (forall z. Obj c z -> Component f g z) -> Nat c d f g

 type Component f g z = Cod f (f :% z) (g :% z)

 newtype Com f g z = Com { unCom :: Component f g z }

 (!) :: (Category c, Category d) => Nat c d f g -> c a b -> d (f :% a) (g
 :% b)
 (!) = undefined

 natId :: Functor f => f -> Nat (Dom f) (Cod f) f f
 natId = undefined

 instance (Category c, Category d) => Category (Nat c d) where
   src = undefined
   tgt = undefined
   (.) = undefined

 type family Dom ftag :: * -> * -> *
 type family Cod ftag :: * -> * -> *

 class (Category (Dom ftag), Category (Cod ftag)) => Functor ftag where
   (%)  :: ftag -> Dom ftag a b -> Cod ftag (ftag :% a) (ftag :% b)

 type family ftag :% a :: *

 data Const (c1 :: * -> * -> *) (c2 :: * -> * -> *) x

 type instance Dom (Const c1 c2 x) = c1
 type instance Cod (Const c1 c2 x) = c2
 type instance Const c1 c2 x :% a = x

 instance (Category c1, Category c2) => Functor (Const c1 c2 x) where
   (%) = undefined

 type ConstF f = Const (Dom f) (Cod f)

 data TerminalUniversal x u a

 type Obj (~>) a = a ~> a

 class Category (~>) where
   src :: a ~> b -> Obj (~>) a
   tgt :: a ~> b -> Obj (~>) b
   (.) :: b ~> c -> a ~> b -> a ~> c
 }}}
 is accepted by 7.0.1, but with the 7.0 branch:
 {{{
 [1 of 1] Compiling Data.Category.Limit ( Data/Category/Limit.hs,
 interpreted )

 Data/Category/Limit.hs:64:21:
     Could not deduce (LimitFam (Discrete (S n1)) (Cod f) f
                         ~
                       BinaryProduct
                         (Cod f) (f :% Z) (LimitFam (Discrete n) (Cod f)
 (Next f)))
     from the context (Functor f,
                       Dom f ~ Discrete (S n),
                       Cod f ~ (~>),
                       HasLimits (Discrete n) (~>),
                       HasBinaryProducts (~>))
       bound by the type signature for
                  limitUniv' :: (Functor f,
                                 Dom f ~ Discrete (S n),
                                 Cod f ~ (~>),
                                 HasLimits (Discrete n) (~>),
                                 HasBinaryProducts (~>)) =>
                                f -> LimitUniversal f
       at Data/Category/Limit.hs:(56,1)-(64,49)
     or from (S n ~ S n1, z ~ S a, z ~ S a)
       bound by a pattern with constructor
                  S :: forall n a. Discrete n a a -> Discrete (S n) (S a)
 (S a),
                in an equation for `h'
       at Data/Category/Limit.hs:64:14-16
     Expected type: ConstF f (LimitFam (Discrete (S n)) (~>) f)
       Actual type: Const
                      (Discrete (S n1))
                      (Cod f)
                      (BinaryProduct
                         (Cod f) (f :% Z) (LimitFam (Discrete n) (Cod f)
 (Next f)))
     Expected type: Com
                      (ConstF f (LimitFam (Discrete (S n)) (~>) f)) f z
       Actual type: Com
                      (Const
                         (Discrete (S n1))
                         (Cod f)
                         (BinaryProduct
                            (Cod f) (f :% Z) (LimitFam (Discrete n) (Cod f)
 (Next f))))
                      f
                      z
     In the expression: Com $ limNext ! n . proj2 x y
     In an equation for `h': h (S n) = Com $ limNext ! n . proj2 x y

 Data/Category/Limit.hs:64:27:
     Could not deduce (LimitFam (Discrete n1) (Cod f) (Next f)
                         ~
                       LimitFam (Discrete n) (Cod f) (Next f))
     from the context (Functor f,
                       Dom f ~ Discrete (S n),
                       Cod f ~ (~>),
                       HasLimits (Discrete n) (~>),
                       HasBinaryProducts (~>))
       bound by the type signature for
                  limitUniv' :: (Functor f,
                                 Dom f ~ Discrete (S n),
                                 Cod f ~ (~>),
                                 HasLimits (Discrete n) (~>),
                                 HasBinaryProducts (~>)) =>
                                f -> LimitUniversal f
       at Data/Category/Limit.hs:(56,1)-(64,49)
     or from (S n ~ S n1, z ~ S a, z ~ S a)
       bound by a pattern with constructor
                  S :: forall n a. Discrete n a a -> Discrete (S n) (S a)
 (S a),
                in an equation for `h'
       at Data/Category/Limit.hs:64:14-16
     NB: `LimitFam' is a type function, and may not be injective
     Expected type: LimitFam (Discrete n) (Cod f) (Next f)
       Actual type: ConstF (Next f) (Limit (Next f)) :% a
     Expected type: Cod
                      f (LimitFam (Discrete n) (Cod f) (Next f)) (f :% S a)
       Actual type: Cod
                      f (ConstF (Next f) (Limit (Next f)) :% a) (Next f :%
 a)
     In the first argument of `(.)', namely `limNext ! n'
     In the second argument of `($)', namely `limNext ! n . proj2 x y'
 Failed, modules loaded: none.
 }}}

-- 
Ticket URL: <http://hackage.haskell.org/trac/ghc/ticket/4950>
GHC <http://www.haskell.org/ghc/>
The Glasgow Haskell Compiler

_______________________________________________
Glasgow-haskell-bugs mailing list
[email protected]
http://www.haskell.org/mailman/listinfo/glasgow-haskell-bugs

Reply via email to