The points you added for getting a better mesh must be in the lines that limit the surfaces, i.e. you do have to split the lines. Otherwise, the mesh cannot be conform, and you will have intersection problems.

I don't see the need of those points... See the working .geo file attached.

Regards,
Ruth

On 26/10/10 23:13, Alexis Blasselle wrote:
Hi everyone,

I do not understand why I can not mesh this structure in 3d.
In 2d, everything is just fine, but in 3d, the volume (5) seems to be a problem.

I thank you all in advance for yours answers, and wish you a good night,

Best regards,

Miss Alexis Blasselle

--
http://www.ann.jussieu.fr/~blasselle/
_______________________________________________ gmsh mailing list [email protected] http://www.geuz.org/mailman/listinfo/gmsh

-- 
Dr. Ir. Ruth V. Sabariego
University of Liege, Dept. of Electrical Engineering & Computer Science, 
Applied & Computational Electromagnetics (ACE),
phone: +32-4-3663737 - fax: +32-4-3662910 - http://ace.montefiore.ulg.ac.be/

// maillage d'un huitieme du cube final cube et du reseau de fibres interieur
// on fait toujours la meme methode, mais les dimensions seront les bonnes
// parametre de finesse du maillage, plus c'est petit plus c'est fin
lc = 0.02 ;
// rayon du cylindre
r = 0.1;
n = 4;
R = 0.2;
// cote du cube que l'on construit, huitieme du cube final
// cote cube final = 2*C donc
C = 0.5;
// longueur des cylindres
H = C-R;
// le rayon de la sphere
RS =  Sqrt(R*R+r*r);
// pour le point supplementaire, de coordonnes (rs, rs, rs) et appartenant a la 
sphere
rs = RS/Sqrt(3);


// point central dans le cube final
Point(100) = {0., 0., 0., lc};

// points x = R 
Point(1) = {R, 0, 0, lc};
Point(2) = {R, r, 0, lc};
Point(3) = {R, 0, r, lc};

// y = R
Point(4) = {0, R, 0, lc};
Point(5) = {0, R, r, lc};
Point(6) = {r, R, 0, lc};

// z = R
Point(7) = {0, 0, R, lc};
Point(8) = {r, 0, R, lc};
Point(9) = {0, r, R, lc};


// autres points du cube
Point(10) = {C, 0, 0, lc};
Point(11) = {C, C, 0, lc};
Point(12) = {0, C, 0, lc};
Point(13) = {C, 0, C, lc};
Point(14) = {C, C, C, lc};
Point(15) = {0, C, C, lc};
Point(16) = {0, 0, C, lc};

// le point bizarre
Point(101) = {rs, rs, rs, lc};

// les points additionnels pour rendre le maillage plus regulier
/*
Point(17) = {C, r/Sqrt(2), r/Sqrt(2), lc};
Point(18) = {r/Sqrt(2), C, r/Sqrt(2), lc};
Point(19) = {r/Sqrt(2), r/Sqrt(2), C, lc};

Point(20) = {RS/Sqrt(2), RS/Sqrt(2), 0, lc};
Point(21) = {RS/Sqrt(2), 0, RS/Sqrt(2), lc};
Point(22) = {0, RS/Sqrt(2), RS/Sqrt(2), lc};
*/

// les cercles des cylindres
Circle(23) = {2, 1, 3};
Circle(56) = {5, 4, 6};
Circle(89) = {8, 7, 9};

// les cercles de la sphere
Circle(83) = {8, 100, 3};
Circle(26) = {2, 100, 6};
Circle(59) = {5, 100, 9};

Circle(1018) = {101, 100, 8};
Circle(6101) = {6, 100, 101};
Circle(68) = {6, 100, 8};

Circle(3101) = {3, 100, 101};
Circle(1015) = {101, 100, 5};
Circle(35) = {3, 100, 5};

Circle(9101) = {9, 100, 101};
Circle(1012) = {101, 100, 2};
Circle(92) = {9, 100, 2};

// relions 14, le point oppose
Line(1415) = {14, 15};
Line(1411) = {14, 11};
Line(1413) = {14, 13};

// Les liens entre les points qui manquent, bases des cylindres
Line(31) = {3, 1};
Line(12) = {1, 2};

Line Loop(11) = {12, 23, 31};
Plane Surface(11) = {11};

out11[] = Extrude{H,0,0}{Surface{11}; };
vol11 = out11[1];

Line(45) = {4, 5};
Line(64) = {6, 4};

Line Loop(44) = {45, 56, 64};
Plane Surface(44) = {44};

out44[] = Extrude{0,H,0}{ Surface{44}; };
vol44 = out44[1];

Line(97) = {9, 7};
Line(78) = {7, 8};

Line Loop(77) = {89, 97, 78};
Plane Surface(77) = {77};

out77[] = Extrude{0,0,H}{Surface{77};};
vol77 = out77[1];

 
// il nous faut definir les surfaces de la boule
Line Loop(8) = {59, 9101, 1015};
Ruled Surface(88) = {8};

Line Loop(9) = {-89, -1018, -9101};
Ruled Surface(99) = {9};

Line Loop(10) = {83, 3101, 1018};
Ruled Surface(1010) = {10};

Line Loop(12) = {-23, -1012, -3101};
Ruled Surface(1212) = {12};

Line Loop(13) = {26, 6101, 1012};
Ruled Surface(1313) = {13};

Line Loop(14) = {-56, -1015, -6101};
Ruled Surface(1414) = {14};


// les lignes complementaires pour les line loop
Line(1007) = {100, 7};
Line(1001) = {100, 1};
Line(1004) = {100, 4};

Line(11015) = {110, 15};
Line(11511) = {115, 11};
Line(11815) = {118, 15};
Line(10311) = {103, 11};
Line(10813) = {108, 13};
Line(11613) = {116, 13};


Line Loop(11816) = {11815, -1415, 1413, -11613, 9137};
Plane Surface(11817) = {11816};
Line Loop(11818) = {11815, -11015, -9125, 59, 9142};
Plane Surface(11819) = {11818};
Line Loop(11820) = {11613, -10813, -9112, -83, 9141};
Plane Surface(11821) = {11820};
Line Loop(11822) = {11015, -1415, 1411, -11511, -9121};
Plane Surface(11823) = {11822};
Line Loop(11824) = {11511, -10311, -9108, 26, 9129};
Plane Surface(11825) = {11824};
Line Loop(11826) = {26, 64, -1004, 1001, 12};
Plane Surface(11827) = {11826};
Line Loop(11828) = {1004, 45, 59, 97, -1007};
Plane Surface(11829) = {11828};
Line Loop(11830) = {1007, 78, 83, 31, -1001};
Plane Surface(11831) = {11830};
Line Loop(11832) = {10311, -1411, 1413, -10813, -9104};
Plane Surface(11833) = {11832};

Surface Loop(4) = {11829, 11827, 11831, 88, 99, 1010, 1212, 1313, 1414, 11, 44, 
77};
Volume(4) = {4};

Surface Loop(5) = {11823, 11819, 11817, 11833, 11825, 11821, 9130, 9143, 9113, 
88, 99, 1010, 1212, 1313, 1414};
Volume(5) = {5};

Physical Volume(1) = {vol11, vol44, vol77, 4};
Physical Volume(5) = {5};
_______________________________________________
gmsh mailing list
[email protected]
http://www.geuz.org/mailman/listinfo/gmsh

Reply via email to