Hi Valentina,

I don't know if it will solve your problem, but you should delete the line:

Plane Surface(75) = {59};

which defines a second time  Plane Surface(60) = {59};

If not, on which surface do you see 2D nodes not part of the 3D Mesh ?

Regards,

Dave


--
David Colignon, Ph.D.
Collaborateur Logistique du F.R.S.-FNRS
CÉCI - Consortium des Équipements de Calcul Intensif
ACE - Applied & Computational Electromagnetics
Sart-Tilman B28
Université de Liège
4000 Liège - BELGIQUE
Tél: +32 (0)4 366 37 32
Fax: +32 (0)4 366 29 10
WWW:    http://www.ceci-hpc.be/
Agenda: http://www.google.com/calendar/embed?src=david.colignon%40gmail.com


On 25/01/12 16:40, valentina carapella wrote:
Hi all,

I am trying to produce a tetrahedral mesh of half of a  thick-walled prolate 
spheroid. To do this, I've first generated
the geometry by adapting an example I found in the gmsh wiki. My script is 
included below. Then I run the 3D meshing
algorithm based on MeshAdapt for 2D and Delaunay for 3D.
The problem I encounter is that a few nodes that are used to generate the 
triangular faces are then not used to generate
any of the tetrahedral elements. Is there a way to avoid this? It's fundamental 
for the later use of the mesh within
another tool that all the nodes defining triangular faces are part of one of 
the tetrahedra of the 3D mesh.

Thanks

Valentina


Thick-Walled Prolate Spheroid Script

lc = 0.09; //this value changes the resolution of the mesh
lz_o = 1; // outer long axis
lx_o = 0.5; // outer radius
wt=0.15;
lx_i=lx_o-wt; //inner radius
lz_i=lz_o-wt; //inner long axis

Point(1) = {0,0,0,lc};
Point(2) = {lx_o,0,0,lc};
Point(3) = {0,0,-lz_o,lc};
Point(4) = {lx_i,0,0,lc};
Point(5) = {0,0,-lz_i,lc};
Ellipse(1) = {2,1,3,3};
Ellipse(2) = {4,1,5,5};

//OUTER ELLIPSOID

Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{1};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{3};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{6};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{9};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{12};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{15};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{18};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{21};
}

//INNER ELLIPSOID

Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{2};
}

Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{27};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{30};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{33};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{36};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{39};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{42};
}
Extrude {{0,0,1}, {0,0,0}, Pi/4} {
   Line{45};
}

//Upper lines connecting inner and outer half spheroid and the related surfaces


Line(51) = {16, 9};
Line(52) = {15, 8};
Line(53) = {14, 7};
Line(54) = {13, 6};
Line(55) = {4, 2};
Line(56) = {19, 12};
Line(57) = {18, 11};
Line(58) = {17, 10};
Line Loop(59) = {40, 58, -16, -51};
Plane Surface(60) = {59};
Line Loop(61) = {51, -13, -52, 37};
Plane Surface(62) = {61};
Line Loop(63) = {52, -10, -53, 34};
Plane Surface(64) = {63};
Line Loop(65) = {53, -7, -54, 31};
Plane Surface(66) = {65};
Line Loop(67) = {54, -4, -55, 28};
Plane Surface(68) = {67};
Line Loop(69) = {55, -25, -56, 49};
Plane Surface(70) = {69};
Line Loop(71) = {56, -22, -57, 46};
Plane Surface(72) = {71};
Line Loop(73) = {57, -19, -58, 43};
Plane Surface(74) = {73};
Plane Surface(75) = {59};
Surface Loop(76) = {14, 17, 20, 23, 26, 5, 8, 11, 64, 62, 38, 41, 44, 47, 50, 
29, 32, 35, 66, 68, 70, 72, 74, 60};
Volume(77) = {76};



_______________________________________________
gmsh mailing list
[email protected]
http://www.geuz.org/mailman/listinfo/gmsh


_______________________________________________
gmsh mailing list
[email protected]
http://www.geuz.org/mailman/listinfo/gmsh

Reply via email to