Some more information about my previous mail.

The triangular element of surface 101 (element 1) has the connectivity matrix 13 20 1 (attached cols.geo) The problem I have is that I do not find these nodes (13 20 1) in the connectivity of my prisms....

I tried another example by defining only one surface and using: (attached col0.geo)
out1[]=Extrude {0,0,h} {Surface{31}; Layers{ {3}, {1.00} };Recombine; };

instead of have two surfaces (31 & 32) and :
out1[]=Extrude {0,0,h} {Surface{31,32}; Layers{ {3}, {1.00} };Recombine; };

The example with one surface in the extrude command is ok, not the other one ...

Thanks for your help,
Philippe


--------------------------------------------------------------
Philippe ACKERER
LHyGeS UMR 7517 UdS-CNRS-Engees
1, rue Blessig
67000 STRASBOURG
tel +33 (0)368 850 561
-------------------------------------------------------------

Le 18/02/2014 10:34, Philippe Ackerer a écrit :
Dear all,
Some troubles between node numbers in the screen (Tools->Option->Visibility->Mesh->Node Labels) and the node numbers in the .msh file.
I attached the .geo file.

On the screen, watch node number 41 (close to node 1). In the .msh file, it seems to be node number 39.

Could you tell me what I did wrong ?
Thanks

Best regards
Philippe


// As usual, we start by defining some variables:

r1=1.0;
r2=19.0;
Lcw=0.50;
Lc1 = 5.0;
Lc2 = 5.0;
dteta=2.0*3.14159/8.0;
teta=dteta;


// Then we define some points and some lines using these variables:

Point(1) = { 0.0, 0.0  , 0.0 , Lcw};
Point(2) = { r1, 0.0   , 0.0 , Lc1};
//Point(3) = { r2 , 0.0   , 0.0 , Lc2};
x1=r2*Cos(teta);
y1=r2*Sin(teta);
// Point(4) = { x1 , y1 , 0.0 , Lc2};
x1=r1*Cos(teta);
y1=r1*Sin(teta);
Point(5) = { x1 , y1 , 0.0 , Lc1};


// Circle(1) = {2,1,5}; starting point: 2, ending point: 5, center: 1.
Circle(1) = {2,1,5};
//Circle(2) = {3,1,4};


Line(10) = {1,2};
//Line(11) = {2,3};
//Line(12) = {4,5};
Line(13) = {5,1};
 

Line Loop(21) = {10,1,13}; Plane Surface(31) = {21};
// Line Loop(22) = {11,2,12,-1}; Plane Surface(32) = {22};

//Extrusion de la surface sur une distance h
h = 3.0;

out1[]=Extrude {0,0,h} {Surface{31}; Layers{ {3}, {1.00} };Recombine; };
Printf(" Top surface=%g", out1[0]);
Printf(" New volume=%g", out1[1]);
Printf(" Lateral surface=%g", out1[2]);
Printf(" Lateral surface=%g", out1[3]);
Printf(" Lateral surface=%g", out1[4]);


Physical Surface(101) = {31};
Physical Surface(102) = {out1[0]};

Physical Volume(500) = {out1[1]};
  
  

// As usual, we start by defining some variables:

r1=1.0;
r2=19.0;
Lcw=0.50;
Lc1 = 5.0;
Lc2 = 5.0;
dteta=2.0*3.14159/8.0;
teta=dteta;


// Then we define some points and some lines using these variables:

Point(1) = { 0.0, 0.0  , 0.0 , Lcw};
Point(2) = { r1, 0.0   , 0.0 , Lc1};
Point(3) = { r2 , 0.0   , 0.0 , Lc2};
x1=r2*Cos(teta);
y1=r2*Sin(teta);
Point(4) = { x1 , y1 , 0.0 , Lc2};
x1=r1*Cos(teta);
y1=r1*Sin(teta);
Point(5) = { x1 , y1 , 0.0 , Lc1};


// Circle(1) = {2,1,5}; starting point: 2, ending point: 5, center: 1.
Circle(1) = {2,1,5};
Circle(2) = {3,1,4};


Line(10) = {1,2};
Line(11) = {2,3};
Line(12) = {4,5};
Line(13) = {5,1};
 

Line Loop(21) = {10,1,13}; Plane Surface(31) = {21};
Line Loop(22) = {11,2,12,-1}; Plane Surface(32) = {22};

//Extrusion de la surface sur une distance h
h = 3.0;

out1[]=Extrude {0,0,h} {Surface{31,32}; Layers{ {3}, {1.00} };Recombine; };
Printf(" Top surface=%g", out1[0]);
Printf(" New volume=%g", out1[1]);
Printf(" Lateral surface=%g", out1[2]);
Printf(" Lateral surface=%g", out1[3]);
Printf(" Lateral surface=%g", out1[4]);
Printf(" Top surface=%g", out1[5]);
Printf(" New volume=%g", out1[6]);
Printf(" Lateral surface=%g", out1[7]);
Printf(" Lateral surface=%g", out1[8]);
Printf(" Lateral surface=%g", out1[9]);
Printf(" Lateral surface=%g", out1[10]);


Physical Surface(101) = {31};
Physical Surface(102) = {out1[0]};

Physical Volume(500) = {out1[1], out1[6]};
  
  

_______________________________________________
gmsh mailing list
[email protected]
http://www.geuz.org/mailman/listinfo/gmsh

Reply via email to