Dear Sirs,

I have a problem with running the short simulation with GROMACS. I have a structure for a small ligand (drg.pdb after cleaning with PRODRG). For this ligand I have run PRODRG in order to get drg.gro file and drg.itp topology file. I have edited the drg.top in order to include drg.itp as #include. My goal is to run simulation in vacuum (no water) - with only ligand (!). No protein also. I have tried to run it but I am getting error message. It seem that GROMACS does not read my topology file. What I am doing wrong ?

grompp -f em.mdp -c drg.gro -p drg.top -o drg.tpr


Results:
....

creating statusfile for 1 node...

Back Off! I just backed up mdout.mdp to ./#mdout.mdp.3#
checking input for internal consistency...
calling /lib/cpp...
processing topology...
Generated 1284 of the 1485 non-bonded parameter combinations
processing coordinates...
Fatal error: number of coordinates in coordinate file (drg.gro, 25)
            does not match topology (drg.top, 0)


Regards

Dariusz
 PRODRG COORDS
   25
    1MOL  C15      1   0.005   1.276   1.490
    1MOL  C14      2   0.069   1.200   1.373
    1MOL  O13      3   0.103   1.067   1.417
    1MOL  C12      4   0.166   0.994   1.309
    1MOL  C11      5   0.211   0.854   1.356
    1MOL  N8       6   0.102   0.758   1.382
    1MOL  C9       7   0.036   0.780   1.512
    1MOL  S7       8   0.161   0.606   1.376
    1MOL  O3B      9   0.291   0.595   1.448
    1MOL  O4B     10   0.178   0.567   1.233
    1MOL  C6      11   0.048   0.497   1.450
    1MOL  S2      12   0.055   0.329   1.454
    1MOL  C3      13  -0.086   0.320   1.543
    1MOL  S1      14  -0.138   0.161   1.586
    1MOL  O1A     15  -0.035   0.112   1.682
    1MOL  O2A     16  -0.276   0.164   1.642
    1MOL  N21     17  -0.127   0.082   1.444
    1MOL  HAB     18  -0.151  -0.014   1.439
    1MOL  C4      19  -0.136   0.441   1.569
    1MOL  C5      20  -0.065   0.543   1.519
    1MOL  C10     21  -0.093   0.696   1.527
    1MOL  N16     22  -0.151   0.729   1.658
    1MOL  HAA     23  -0.106   0.813   1.689
    1MOL  C17     24  -0.294   0.760   1.645
    1MOL  C18     25  -0.353   0.787   1.783
 [ moleculetype ]
 ;name nrexcl
MOL      3
;       
;       
;       This file was generated by PRODRG version 040607.0508
;       PRODRG written/copyrighted by Daan van Aalten
;       
;       Questions/comments to [EMAIL PROTECTED]
;       
;       When using this software in a publication, cite:
;       A. W. Schuettelkopf and D. M. F. van Aalten (2004).
;       PRODRG - a tool for high-throughput crystallography
;       of protein-ligand complexes.
;       Acta Crystallogr. D60, in press.
;       
;       
 [ atoms ]
 ;  nr  type resnr resid  atom  cgnr charge
     1   CH3     1 MOL     C15     1    0.018
     2   CS2     1 MOL     C14     1    0.210
     3    OS     1 MOL     O13     1   -0.188
     4   CS2     1 MOL     C12     1    0.209
     5   CH2     1 MOL     C11     1    0.055
     6    NL     1 MOL      N8     1   -0.280
     7   CH2     1 MOL      C9     1    0.056
     8     S     1 MOL      S7     1    2.175
     9    OM     1 MOL     O3B     1   -0.862
    10    OM     1 MOL     O4B     1   -0.862
    11    CB     1 MOL      C6     1   -0.028
    12     S     1 MOL      S2     1    0.327
    13    CB     1 MOL      C3     1   -0.028
    14     S     1 MOL      S1     1    2.175
    15    OM     1 MOL     O1A     1   -0.862
    16    OM     1 MOL     O2A     1   -0.862
    17     N     1 MOL     N21     1   -1.078
    18     H     1 MOL     HAB     1   -0.004
    19  CR51     1 MOL      C4     1   -0.049
    20    CB     1 MOL      C5     1   -0.028
    21   CH1     1 MOL     C10     1    0.118
    22    NL     1 MOL     N16     1   -0.280
    23     H     1 MOL     HAA     1   -0.005
    24   CH2     1 MOL     C17     1    0.055
    25   CH3     1 MOL     C18     1    0.018
 [ bonds ]
 ;ai  aj  fu    c0          c1
   1   2   1 0.153    334720.0 0.153    334720.0 ;   C15  C14
   2   3   1 0.144    251040.0 0.144    251040.0 ;   C14  O13
   3   4   1 0.144    251040.0 0.144    251040.0 ;   O13  C12
   4   5   1 0.153    334720.0 0.153    334720.0 ;   C12  C11
   5   6   1 0.147    376560.0 0.147    376560.0 ;   C11   N8
   6   7   1 0.147    376560.0 0.147    376560.0 ;    N8   C9
   6   8   1 0.163    229631.7 0.163    229631.7 ;    N8   S7
   7  21   1 0.153    334720.0 0.153    334720.0 ;    C9  C10
   8   9   1 0.150    376560.0 0.150    376560.0 ;    S7  O3B
   8  10   1 0.150    376560.0 0.150    376560.0 ;    S7  O4B
   8  11   1 0.175    261918.4 0.175    261918.4 ;    S7   C6
  11  12   1 0.172    264983.0 0.172    264983.0 ;    C6   S2
  11  20   1 0.139    418400.0 0.139    418400.0 ;    C6   C5
  12  13   1 0.172    264983.0 0.172    264983.0 ;    S2   C3
  13  14   1 0.175    261918.4 0.175    261918.4 ;    C3   S1
  13  19   1 0.133    418400.0 0.133    418400.0 ;    C3   C4
  14  15   1 0.150    376560.0 0.150    376560.0 ;    S1  O1A
  14  16   1 0.150    376560.0 0.150    376560.0 ;    S1  O2A
  14  17   1 0.163    333868.6 0.163    333868.6 ;    S1  N21
  17  18   1 0.100    374468.0 0.100    374468.0 ;   N21  HAB
  19  20   1 0.133    418400.0 0.133    418400.0 ;    C4   C5
  20  21   1 0.153    334720.0 0.153    334720.0 ;    C5  C10
  21  22   1 0.147    376560.0 0.147    376560.0 ;   C10  N16
  22  23   1 0.100    374468.0 0.100    374468.0 ;   N16  HAA
  22  24   1 0.147    376560.0 0.147    376560.0 ;   N16  C17
  24  25   1 0.153    334720.0 0.153    334720.0 ;   C17  C18
 [ pairs ]
 ;ai  aj  fu    c0          c1
   1   4   1                   ;   C15  C12
   2   5   1                   ;   C14  C11
   3   6   1                   ;   O13   N8
   4   7   1                   ;   C12   C9
   4   8   1                   ;   C12   S7
   5   9   1                   ;   C11  O3B
   5  10   1                   ;   C11  O4B
   5  11   1                   ;   C11   C6
   5  21   1                   ;   C11  C10
   6  12   1                   ;    N8   S2
   6  20   1                   ;    N8   C5
   6  22   1                   ;    N8  N16
   7   9   1                   ;    C9  O3B
   7  10   1                   ;    C9  O4B
   7  11   1                   ;    C9   C6
   7  19   1                   ;    C9   C4
   7  23   1                   ;    C9  HAA
   7  24   1                   ;    C9  C17
   8  13   1                   ;    S7   C3
   8  19   1                   ;    S7   C4
   8  21   1                   ;    S7  C10
   9  12   1                   ;   O3B   S2
   9  20   1                   ;   O3B   C5
  10  12   1                   ;   O4B   S2
  10  20   1                   ;   O4B   C5
  11  14   1                   ;    C6   S1
  11  22   1                   ;    C6  N16
  12  15   1                   ;    S2  O1A
  12  16   1                   ;    S2  O2A
  12  17   1                   ;    S2  N21
  12  21   1                   ;    S2  C10
  13  18   1                   ;    C3  HAB
  13  21   1                   ;    C3  C10
  14  20   1                   ;    S1   C5
  15  18   1                   ;   O1A  HAB
  15  19   1                   ;   O1A   C4
  16  18   1                   ;   O2A  HAB
  16  19   1                   ;   O2A   C4
  17  19   1                   ;   N21   C4
  19  22   1                   ;    C4  N16
  20  23   1                   ;    C5  HAA
  20  24   1                   ;    C5  C17
  21  25   1                   ;   C10  C18
  23  25   1                   ;   HAA  C18
 [ angles ]
 ;ai  aj  ak  fu    c0          c1
   1   2   3   1 109.5       284.5 109.5       284.5 ;   C15  C14  O13
   2   3   4   1 109.5       334.7 109.5       334.7 ;   C14  O13  C12
   3   4   5   1 109.5       284.5 109.5       284.5 ;   O13  C12  C11
   4   5   6   1 109.5       460.2 109.5       460.2 ;   C12  C11   N8
   5   6   7   1 109.5       376.6 109.5       376.6 ;   C11   N8   C9
   5   6   8   1 109.5       376.6 109.5       376.6 ;   C11   N8   S7
   7   6   8   1 109.5       376.6 109.5       376.6 ;    C9   N8   S7
   6   7  21   1 109.5       460.2 109.5       460.2 ;    N8   C9  C10
   6   8   9   1 109.5       460.2 109.5       460.2 ;    N8   S7  O3B
   6   8  10   1 109.5       460.2 109.5       460.2 ;    N8   S7  O4B
   9   8  10   1 109.5       460.2 109.5       460.2 ;   O3B   S7  O4B
   6   8  11   1 109.5       460.2 109.5       460.2 ;    N8   S7   C6
   9   8  11   1 109.5       460.2 109.5       460.2 ;   O3B   S7   C6
  10   8  11   1 109.5       460.2 109.5       460.2 ;   O4B   S7   C6
   8  11  12   1 132.0       418.4 132.0       418.4 ;    S7   C6   S2
   8  11  20   1 120.0       418.4 120.0       418.4 ;    S7   C6   C5
  12  11  20   1 108.0       418.4 108.0       418.4 ;    S2   C6   C5
  11  12  13   1 108.0       418.4 108.0       418.4 ;    C6   S2   C3
  12  13  14   1 120.0       418.4 120.0       418.4 ;    S2   C3   S1
  12  13  19   1 108.0       418.4 108.0       418.4 ;    S2   C3   C4
  14  13  19   1 120.0       418.4 120.0       418.4 ;    S1   C3   C4
  13  14  15   1 109.5       460.2 109.5       460.2 ;    C3   S1  O1A
  13  14  16   1 109.5       460.2 109.5       460.2 ;    C3   S1  O2A
  15  14  16   1 109.5       460.2 109.5       460.2 ;   O1A   S1  O2A
  13  14  17   1 109.5       460.2 109.5       460.2 ;    C3   S1  N21
  15  14  17   1 109.5       460.2 109.5       460.2 ;   O1A   S1  N21
  16  14  17   1 109.5       460.2 109.5       460.2 ;   O2A   S1  N21
  14  17  18   1 120.0       418.4 120.0       418.4 ;    S1  N21  HAB
  13  19  20   1 108.0       418.4 108.0       418.4 ;    C3   C4   C5
  11  20  19   1 108.0       418.4 108.0       418.4 ;    C6   C5   C4
  11  20  21   1 120.0       418.4 120.0       418.4 ;    C6   C5  C10
  19  20  21   1 132.0       418.4 132.0       418.4 ;    C4   C5  C10
   7  21  20   1 109.5       460.2 109.5       460.2 ;    C9  C10   C5
   7  21  22   1 109.5       460.2 109.5       460.2 ;    C9  C10  N16
  20  21  22   1 109.5       460.2 109.5       460.2 ;    C5  C10  N16
  21  22  23   1 109.5       376.6 109.5       376.6 ;   C10  N16  HAA
  21  22  24   1 109.5       376.6 109.5       376.6 ;   C10  N16  C17
  23  22  24   1 109.5       376.6 109.5       376.6 ;   HAA  N16  C17
  22  24  25   1 109.5       460.2 109.5       460.2 ;   N16  C17  C18
 [ dihedrals ]
 ;ai  aj  ak  al  fu    c0    c1 m  c0   c1 m
  11   8  12  20   2   0.0 1673.6 0   0.0 1673.6 0 ; IDI    C6   S7   S2   C5
  13  12  14  19   2   0.0 1673.6 0   0.0 1673.6 0 ; IDI    C3   S2   S1   C4
  20  11  21  19   2   0.0 1673.6 0   0.0 1673.6 0 ; IDI    C5   C6  C10   C4
   6   5   7   8   2  35.3  836.8 0  35.3  836.8 0 ; IDI    N8  C11   C9   S7
   8   6   9  10   2  35.3  836.8 0  35.3  836.8 0 ; IDI    S7   N8  O3B  O4B
  14  13  16  15   2  35.3  836.8 0  35.3  836.8 0 ; IDI    S1   C3  O2A  O1A
  21   7  22  20   2  35.3  836.8 0  35.3  836.8 0 ; IDI   C10   C9  N16   C5
  22  21  24  23   2  35.3  836.8 0  35.3  836.8 0 ; IDI   N16  C10  C17  HAA
  11  12  13  19   2   0.0 1673.6 0   0.0 1673.6 0 ; IDI    C6   S2   C3   C4
  12  13  19  20   2   0.0 1673.6 0   0.0 1673.6 0 ; IDI    S2   C3   C4   C5
  13  19  20  11   2   0.0 1673.6 0   0.0 1673.6 0 ; IDI    C3   C4   C5   C6
  19  20  11  12   2   0.0 1673.6 0   0.0 1673.6 0 ; IDI    C4   C5   C6   S2
  20  11  12  13   2   0.0 1673.6 0   0.0 1673.6 0 ; IDI    C5   C6   S2   C3
   1   2   3   4   1   0.0    3.8 3   0.0    3.8 3 ; DI    C15  C14  O13  C12
   5   4   3   2   1   0.0    3.8 3   0.0    3.8 3 ; DI    C11  C12  O13  C14
   3   4   5   6   1   0.0    5.9 3   0.0    5.9 3 ; DI    O13  C12  C11   N8
   4   5   6   8   1   0.0    3.8 3   0.0    3.8 3 ; DI    C12  C11   N8   S7
  21   7   6   5   1   0.0    3.8 3   0.0    3.8 3 ; DI    C10   C9   N8  C11
   5   6   8  11   1   0.0    1.3 3   0.0    1.3 3 ; DI    C11   N8   S7   C6
   6   7  21  22   1   0.0    5.9 3   0.0    5.9 3 ; DI     N8   C9  C10  N16
   6   8  11  20   1   0.0    2.9 3   0.0    2.9 3 ; DI     N8   S7   C6   C5
  12  13  14  17   1   0.0    2.9 3   0.0    2.9 3 ; DI     S2   C3   S1  N21
  13  14  17  18   1 180.0   16.7 2 180.0   16.7 2 ; DI     C3   S1  N21  HAB
  11  20  21  22   1   0.0    0.4 6   0.0    0.4 6 ; DI     C6   C5  C10  N16
   7  21  22  24   1   0.0    3.8 3   0.0    3.8 3 ; DI     C9  C10  N16  C17
  25  24  22  21   1   0.0    3.8 3   0.0    3.8 3 ; DI    C18  C17  N16  C10

Attachment: drg.mol
Description: MOL mdl chemical test

Attachment: drg.pdb
Description: Protein Databank data

; Include forcefield parameters
#include "ffgmx.itp"
#include "drg.itp"

;
;       User spoel (236)
;       Wed Nov  3 17:12:44 1993
;       Input file
;
; cpp                 =  /lib/cpp
; define              =  -DFLEX_SPC
; constraints         =  none
; integrator          =  steep
; nsteps              =  100
;
;       Energy minimizing stuff
;
; emtol               =  2000
; emstep              =  0.01

; nstcomm             =  1
; ns_type             =  grid
; rlist               =  1
; rcoulomb            =  1.0
; rvdw                =  1.0
; Tcoupl              =  no
; Pcoupl              =  no
; gen_vel             =  no


title = drg_trp
cpp = /lib/cpp ; location of cpp on SGI
define = -DFLEX_SPC ; Use Ferguson’s Flexible water model [4]
constraints = none
integrator = steep
dt = 0.002 ; ps !
nsteps = 500
nstlist = 10
ns_type = grid
rlist = 0.9
coulombtype = PME ; Use particle-mesh ewald
rcoulomb = 0.9
rvdw = 1.0
fourierspacing = 0.12
fourier_nx = 0
fourier_ny = 0
fourier_nz = 0
pme_order = 4
ewald_rtol = 1e-5
optimize_fft = yes
;;
;; Energy minimizing stuff
;;
emtol = 1000.0
emstep = 0.01
;
;       File 'mdout.mdp' was generated
;       By user: darman (1001)
;       On host: linux
;       At date: Thu Mar  2 12:58:07 2006
;

; VARIOUS PREPROCESSING OPTIONS
title                    = drg_trp
cpp                      = /lib/cpp
include                  = 
define                   = -DFLEX_SPC

; RUN CONTROL PARAMETERS
integrator               = steep
; Start time and timestep in ps
tinit                    = 0
dt                       = 0.002
nsteps                   = 500
; For exact run continuation or redoing part of a run
init_step                = 0
; mode for center of mass motion removal
comm-mode                = Linear
; number of steps for center of mass motion removal
nstcomm                  = 1
; group(s) for center of mass motion removal
comm-grps                = 

; LANGEVIN DYNAMICS OPTIONS
; Temperature, friction coefficient (amu/ps) and random seed
bd-temp                  = 300
bd-fric                  = 0
ld-seed                  = 1993

; ENERGY MINIMIZATION OPTIONS
; Force tolerance and initial step-size
emtol                    = 1000.0
emstep                   = 0.01
; Max number of iterations in relax_shells
niter                    = 20
; Step size (1/ps^2) for minimization of flexible constraints
fcstep                   = 0
; Frequency of steepest descents steps when doing CG
nstcgsteep               = 1000
nbfgscorr                = 10

; OUTPUT CONTROL OPTIONS
; Output frequency for coords (x), velocities (v) and forces (f)
nstxout                  = 100
nstvout                  = 100
nstfout                  = 0
; Checkpointing helps you continue after crashes
nstcheckpoint            = 1000
; Output frequency for energies to log file and energy file
nstlog                   = 100
nstenergy                = 100
; Output frequency and precision for xtc file
nstxtcout                = 0
xtc-precision            = 1000
; This selects the subset of atoms for the xtc file. You can
; select multiple groups. By default all atoms will be written.
xtc-grps                 = 
; Selection of energy groups
energygrps               = 

; NEIGHBORSEARCHING PARAMETERS
; nblist update frequency
nstlist                  = 10
; ns algorithm (simple or grid)
ns_type                  = grid
; Periodic boundary conditions: xyz (default), no (vacuum)
; or full (infinite systems only)
pbc                      = xyz
; nblist cut-off        
rlist                    = 0.9
domain-decomposition     = no

; OPTIONS FOR ELECTROSTATICS AND VDW
; Method for doing electrostatics
coulombtype              = PME
rcoulomb-switch          = 0
rcoulomb                 = 0.9
; Dielectric constant (DC) for cut-off or DC of reaction field
epsilon-r                = 1
; Method for doing Van der Waals
vdw-type                 = Cut-off
; cut-off lengths       
rvdw-switch              = 0
rvdw                     = 1.0
; Apply long range dispersion corrections for Energy and Pressure
DispCorr                 = No
; Extension of the potential lookup tables beyond the cut-off
table-extension          = 1
; Spacing for the PME/PPPM FFT grid
fourierspacing           = 0.12
; FFT grid size, when a value is 0 fourierspacing will be used
fourier_nx               = 0
fourier_ny               = 0
fourier_nz               = 0
; EWALD/PME/PPPM parameters
pme_order                = 4
ewald_rtol               = 1e-5
ewald_geometry           = 3d
epsilon_surface          = 0
optimize_fft             = yes

; GENERALIZED BORN ELECTROSTATICS
; Algorithm for calculating Born radii
gb_algorithm             = Still
; Frequency of calculating the Born radii inside rlist
nstgbradii               = 1
; Cutoff for Born radii calculation; the contribution from atoms
; between rlist and rgbradii is updated every nstlist steps
rgbradii                 = 2
; Salt concentration in M for Generalized Born models
gb_saltconc              = 0

; IMPLICIT SOLVENT (for use with Generalized Born electrostatics)
implicit_solvent         = No

; OPTIONS FOR WEAK COUPLING ALGORITHMS
; Temperature coupling  
tcoupl                   = No
; Groups to couple separately
tc-grps                  = 
; Time constant (ps) and reference temperature (K)
tau-t                    = 
ref-t                    = 
; Pressure coupling     
Pcoupl                   = No
Pcoupltype               = Isotropic
; Time constant (ps), compressibility (1/bar) and reference P (bar)
tau-p                    = 1
compressibility          = 
ref-p                    = 
; Random seed for Andersen thermostat
andersen_seed            = 815131

; SIMULATED ANNEALING  
; Type of annealing for each temperature group (no/single/periodic)
annealing                = 
; Number of time points to use for specifying annealing in each group
annealing_npoints        = 
; List of times at the annealing points for each group
annealing_time           = 
; Temp. at each annealing point, for each group.
annealing_temp           = 

; GENERATE VELOCITIES FOR STARTUP RUN
gen-vel                  = no
gen-temp                 = 300
gen-seed                 = 173529

; OPTIONS FOR BONDS    
constraints              = none
; Type of constraint algorithm
constraint-algorithm     = Lincs
; Do not constrain the start configuration
unconstrained-start      = no
; Use successive overrelaxation to reduce the number of shake iterations
Shake-SOR                = no
; Relative tolerance of shake
shake-tol                = 1e-04
; Highest order in the expansion of the constraint coupling matrix
lincs-order              = 4
; Number of iterations in the final step of LINCS. 1 is fine for
; normal simulations, but use 2 to conserve energy in NVE runs.
; For energy minimization with constraints it should be 4 to 8.
lincs-iter               = 1
; Lincs will write a warning to the stderr if in one step a bond
; rotates over more degrees than
lincs-warnangle          = 30
; Convert harmonic bonds to morse potentials
morse                    = no

; ENERGY GROUP EXCLUSIONS
; Pairs of energy groups for which all non-bonded interactions are excluded
energygrp_excl           = 

; NMR refinement stuff 
; Distance restraints type: No, Simple or Ensemble
disre                    = No
; Force weighting of pairs in one distance restraint: Conservative or Equal
disre-weighting          = Conservative
; Use sqrt of the time averaged times the instantaneous violation
disre-mixed              = no
disre-fc                 = 1000
disre-tau                = 0
; Output frequency for pair distances to energy file
nstdisreout              = 100
; Orientation restraints: No or Yes
orire                    = no
; Orientation restraints force constant and tau for time averaging
orire-fc                 = 0
orire-tau                = 0
orire-fitgrp             = 
; Output frequency for trace(SD) to energy file
nstorireout              = 100
; Dihedral angle restraints: No, Simple or Ensemble
dihre                    = No
dihre-fc                 = 1000
dihre-tau                = 0
; Output frequency for dihedral values to energy file
nstdihreout              = 100

; Free energy control stuff
free-energy              = no
init-lambda              = 0
delta-lambda             = 0
sc-alpha                 = 0
sc-sigma                 = 0.3

; Non-equilibrium MD stuff
acc-grps                 = 
accelerate               = 
freezegrps               = 
freezedim                = 
cos-acceleration         = 0

; Electric fields      
; Format is number of terms (int) and for all terms an amplitude (real)
; and a phase angle (real)
E-x                      = 
E-xt                     = 
E-y                      = 
E-yt                     = 
E-z                      = 
E-zt                     = 

; User defined thingies
user1-grps               = 
user2-grps               = 
userint1                 = 0
userint2                 = 0
userint3                 = 0
userint4                 = 0
userreal1                = 0
userreal2                = 0
userreal3                = 0
userreal4                = 0
_______________________________________________
gmx-users mailing list    [email protected]
http://www.gromacs.org/mailman/listinfo/gmx-users
Please don't post (un)subscribe requests to the list. Use the 
www interface or send it to [EMAIL PROTECTED]
Can't post? Read http://www.gromacs.org/mailing_lists/users.php

Reply via email to