> That was a long mail. How about T-coupling? Which algorithm did you use?

Sorry for the long mail. For T-coupling I used Berendsen al gorithm.

> Did you do a diff on the md.log to check for differences in the mdp
> parameters?

Yes, I attach the diff file (emended of references and other comments), as
well as the run parameters reported in the NEW md log file.
For system 1 I tried both the same tpr file (from 3.3.1) in 3.3.1 and
4.0.4 simulations, and a new 4.0.4 format tpr file with grompp for 4.0.4
md run, but all simulations stopped in about 2,000 steps.
System 2, for which I attached the different parts of the log files, was
simulated using the same tpr file (from 3.3.1) for both 3.3.1 and 4.0.4 MD
runs.

> Did you run these in parallel? What happens when you run it
> sequentially? And what happens in single precision?

For system 1, changing precision, compiler or serial-vs-parallel run only
affect the exact step at which the simulation stops. Also for system 2
these parameters do not affect the overall oscillating behaviour of the
simulation.

Best,
Pietro

-- 
Dr. Pietro Amodeo, PhD.
Istituto di Chimica Biomolecolare del CNR
Comprensorio "A. Olivetti", Edificio 70
Via Campi Flegrei 34
I-80078 Pozzuoli (Napoli) - Italy
Phone      +39-0818675072
Fax        +39-0818041770
Email    [email protected]
11c11
<                             :-)  VERSION 3.3.1  (-:
---
>                             :-)  VERSION 4.0.4  (-:
40,65d55
< CPU=  0, lastcg= 1461, targetcg= 6589, myshift=    5
< CPU=  1, lastcg= 2717, targetcg= 7845, myshift=    5
< CPU=  2, lastcg= 3973, targetcg= 9101, myshift=    5
< CPU=  3, lastcg= 5229, targetcg=  102, myshift=    5
< CPU=  4, lastcg= 6485, targetcg= 1358, myshift=    4
< CPU=  5, lastcg= 7740, targetcg= 2612, myshift=    4
< CPU=  6, lastcg= 8998, targetcg= 3870, myshift=    4
< CPU=  7, lastcg=10255, targetcg= 5128, myshift=    4
< nsb->shift =   5, nsb->bshift=  0
< Listing Scalars
< nsb->nodeid:         0
< nsb->nnodes:      8
< nsb->cgtotal: 10256
< nsb->natoms:  30126
< nsb->shift:       5
< nsb->bshift:      0
< Nodeid   index  homenr  cgload  workload
<      0       0    3766    1462      1462
<      1    3766    3766    2718      2718
<      2    7532    3766    3974      3974
<      3   11298    3766    5230      5230
<      4   15064    3766    6486      6486
<      5   18830    3765    7741      7741
<      6   22595    3766    8999      8999
<      7   26361    3765   10256     10256
< 
73,74d62
<    bDomDecomp           = FALSE
<    decomp_dir           = 0
77d64
<    nstcheckpoint        = 1000
96c83,84
<    bUncStart            = FALSE
---
>    bPeriodicMols        = FALSE
>    bContinuation        = FALSE
109a98,106
>    refcoord_scaling     = No
>    posres_com (3):
>       posres_com[0]= 0.00000e+00
>       posres_com[1]= 0.00000e+00
>       posres_com[2]= 0.00000e+00
>    posres_comB (3):
>       posres_comB[0]= 0.00000e+00
>       posres_comB[1]= 0.00000e+00
>       posres_comB[2]= 0.00000e+00
111a109
>    rtpi                 = 0.05
120a119
>    implicit_solvent     = No
121a121
>    gb_epsilon_solvent   = 80
125c125,128
<    implicit_solvent     = No
---
>    gb_obc_alpha         = 1
>    gb_obc_beta          = 0.8
>    gb_obc_gamma         = 4.85
>    sa_surface_tension   = 2.092
127d129
<    fudgeQQ              = 1
133a136,144
>    nwall                = 0
>    wall_type            = 9-3
>    wall_atomtype[0]     = -1
>    wall_atomtype[1]     = -1
>    wall_density[0]      = 0
>    wall_density[1]      = 0
>    wall_ewald_zfac      = 3
>    pull                 = no
>    disre                = No
143,144d153
<    dihre-tau            = 0
<    nstdihreout          = 100
152c161
<    shake_tol            = 1e-04
---
>    shake_tol            = 0.0001
199,216d207
< Max number of graph edges per atom is 4
< Table routines are used for coulomb: TRUE
< Table routines are used for vdw:     FALSE
< Using a Gaussian width (1/beta) of 0.320163 nm for Ewald
< Cut-off's:   NS: 1   Coulomb: 1   LJ: 1.4
< System total charge: 0.000
< Generated table with 1200 data points for Ewald.
< Tabscale = 500 points/nm
< Generated table with 1200 data points for LJ6.
< Tabscale = 500 points/nm
< Generated table with 1200 data points for LJ12.
< Tabscale = 500 points/nm
< Generated table with 500 data points for 1-4 COUL.
< Tabscale = 500 points/nm
< Generated table with 500 data points for 1-4 LJ6.
< Tabscale = 500 points/nm
< Generated table with 500 data points for 1-4 LJ12.
< Tabscale = 500 points/nm
218c209,224
< Enabling SPC water optimization for 9451 molecules.
---
> Initializing Domain Decomposition on 8 nodes
> Dynamic load balancing: auto
> Will sort the charge groups at every domain (re)decomposition
> Initial maximum inter charge-group distances:
>     two-body bonded interactions: 0.614 nm, LJ-14, atoms 1485 1492
>   multi-body bonded interactions: 0.614 nm, Proper Dih., atoms 1485 1492
> Minimum cell size due to bonded interactions: 0.675 nm
> Maximum distance for 5 constraints, at 120 deg. angles, all-trans: 0.876 nm
> Estimated maximum distance required for P-LINCS: 0.876 nm
> This distance will limit the DD cell size, you can override this with -rcon
> Using 0 separate PME nodes
> Scaling the initial minimum size with 1/0.8 (option -dds) = 1.25
> Optimizing the DD grid for 8 cells with a minimum initial size of 1.095 nm
> The maximum allowed number of cells is: X 5 Y 5 Z 5
> Domain decomposition grid 4 x 2 x 1, separate PME nodes 0
> Domain decomposition nodeid 0, coordinates 0 0 0
219a226,227
> Table routines are used for coulomb: TRUE
> Table routines are used for vdw:     FALSE
228,231c236,257
< Parallelized PME sum used.
< PARALLEL FFT DATA:
<    local_nx:                   8  local_x_start:                   0
<    local_ny_after_transpose:   8  local_y_start_after_transpose    0
---
> Using a Gaussian width (1/beta) of 0.320163 nm for Ewald
> Cut-off's:   NS: 1   Coulomb: 1   LJ: 1.4
> System total charge: 0.000
> Generated table with 4799 data points for Ewald.
> Tabscale = 2000 points/nm
> Generated table with 4799 data points for LJ6.
> Tabscale = 2000 points/nm
> Generated table with 4799 data points for LJ12.
> Tabscale = 2000 points/nm
> Generated table with 4799 data points for 1-4 COUL.
> Tabscale = 2000 points/nm
> Generated table with 4799 data points for 1-4 LJ6.
> Tabscale = 2000 points/nm
> Generated table with 4799 data points for 1-4 LJ12.
> Tabscale = 2000 points/nm
> 
> Enabling SPC water optimization for 9451 molecules.
> 
> Configuring nonbonded kernels...
> Testing x86_64 SSE2 support... present.
> 
> 
233,237d258
< Done rmpbc
< Center of mass motion removal mode is Linear
< We have the following groups for center of mass motion removal:
<   0:  rest, initial mass: 189902
< There are: 3766 Atoms
239c260
< Constraining the starting coordinates (step -2)
---
> Initializing Parallel LINear Constraint Solver
246a268,270
> The number of constraints is 1787
> There are inter charge-group constraints,
> will communicate selected coordinates each lincs iteration
255a280,311
> Linking all bonded interactions to atoms
> There are 6229 inter charge-group exclusions,
> will use an extra communication step for exclusion forces for PME
> 
> The initial number of communication pulses is: X 1 Y 1
> The initial domain decomposition cell size is: X 1.55 nm Y 3.02 nm
> 
> The maximum allowed distance for charge groups involved in interactions is:
>                  non-bonded interactions           1.400 nm
> (the following are initial values, they could change due to box deformation)
>             two-body bonded interactions  (-rdd)   1.400 nm
>           multi-body bonded interactions  (-rdd)   1.400 nm
>   atoms separated by up to 5 constraints  (-rcon)  1.551 nm
> 
> When dynamic load balancing gets turned on, these settings will change to:
> The maximum number of communication pulses is: X 2 Y 1
> The minimum size for domain decomposition cells is 1.082 nm
> The requested allowed shrink of DD cells (option -dds) is: 0.80
> The allowed shrink of domain decomposition cells is: X 0.70 Y 0.46
> The maximum allowed distance for charge groups involved in interactions is:
>                  non-bonded interactions           1.400 nm
>             two-body bonded interactions  (-rdd)   1.400 nm
>           multi-body bonded interactions  (-rdd)   1.082 nm
>   atoms separated by up to 5 constraints  (-rcon)  1.082 nm
> 
> 
> Making 2D domain decomposition grid 4 x 2 x 1, home cell index 0 0 0
> 
> Center of mass motion removal mode is Linear
> We have the following groups for center of mass motion removal:
>   0:  rest
> 
261a318,320
> There are: 30126 Atoms
> Charge group distribution at step 0: 1295 1280 1281 1276 1309 1258 1283 1274
> Grid: 11 x 13 x 9 cells
263,278c322
< Initializing LINear Constraint Solver
<   number of constraints is 1787
<   average number of constraints coupled to one constraint is 2.9
< 
<    Rel. Constraint Deviation:  Max    between atoms     RMS
<        Before LINCS         0.032909    340    341   0.006025
<         After LINCS         0.000481    509    511   0.000072
< 
< Going to use C-settle (668 waters)
< wo = 0.888096, wh =0.0559521, wohh = 18.0154, rc = 0.08165, ra = 0.00646074
< rb = 0.0512738, rc2 = 0.1633, rone = 1, dHH = 0.1633, dOH = 0.1
< 
< Constraining the coordinates at t0-dt (step -1)
<    Rel. Constraint Deviation:  Max    between atoms     RMS
<        Before LINCS         0.102061    310    311   0.017326
<         After LINCS         0.000231    858    860   0.000037
---
> Constraining the starting coordinates (step 0)
280c324,325
< Started mdrun on node 0 Thu Nov 20 16:46:22 2008
---
> Constraining the coordinates at t0-dt (step 0)
> RMS relative constraint deviation after constraining: 3.73e-05
281a327
> 
Log file opened on Thu Mar 12 15:53:42 2009
Host: e4hpc01  pid: 23358  nodeid: 0  nnodes:  8
The Gromacs distribution was built Thu Mar 12 14:40:48 CET 2009 by
r...@e4hpc01 (Linux 2.6.18-53.el5 x86_64)


                         :-)  G  R  O  M  A  C  S  (-:

                     Gnomes, ROck Monsters And Chili Sauce

                            :-)  VERSION 4.0.4  (-:


      Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
       Copyright (c) 1991-2000, University of Groningen, The Netherlands.
             Copyright (c) 2001-2008, The GROMACS development team,
            check out http://www.gromacs.org for more information.

         This program is free software; you can redistribute it and/or
          modify it under the terms of the GNU General Public License
         as published by the Free Software Foundation; either version 2
             of the License, or (at your option) any later version.

         :-)  /root/NFS/Gromacs/bin/mdrun_mpi_d (double precision)  (-:


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable
molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel
GROMACS 3.0: A package for molecular simulation and trajectory analysis
J. Mol. Mod. 7 (2001) pp. 306-317
-------- -------- --- Thank You --- -------- --------


++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation
Comp. Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------

parameters of the run:
   integrator           = md
   nsteps               = 50000
   init_step            = 0
   ns_type              = Grid
   nstlist              = 10
   ndelta               = 2
   nstcomm              = 1
   comm_mode            = Linear
   nstlog               = 10
   nstxout              = 250
   nstvout              = 1000
   nstfout              = 0
   nstenergy            = 10
   nstxtcout            = 0
   init_t               = 0
   delta_t              = 0.002
   xtcprec              = 1000
   nkx                  = 64
   nky                  = 64
   nkz                  = 63
   pme_order            = 4
   ewald_rtol           = 1e-05
   ewald_geometry       = 0
   epsilon_surface      = 0
   optimize_fft         = TRUE
   ePBC                 = xyz
   bPeriodicMols        = FALSE
   bContinuation        = FALSE
   bShakeSOR            = FALSE
   etc                  = Berendsen
   epc                  = Parrinello-Rahman
   epctype              = Isotropic
   tau_p                = 0.5
   ref_p (3x3):
      ref_p[    0]={ 1.00000e+00,  0.00000e+00,  0.00000e+00}
      ref_p[    1]={ 0.00000e+00,  1.00000e+00,  0.00000e+00}
      ref_p[    2]={ 0.00000e+00,  0.00000e+00,  1.00000e+00}
   compress (3x3):
      compress[    0]={ 4.50000e-05,  0.00000e+00,  0.00000e+00}
      compress[    1]={ 0.00000e+00,  4.50000e-05,  0.00000e+00}
      compress[    2]={ 0.00000e+00,  0.00000e+00,  4.50000e-05}
   refcoord_scaling     = No
   posres_com (3):
      posres_com[0]= 0.00000e+00
      posres_com[1]= 0.00000e+00
      posres_com[2]= 0.00000e+00
   posres_comB (3):
      posres_comB[0]= 0.00000e+00
      posres_comB[1]= 0.00000e+00
      posres_comB[2]= 0.00000e+00
   andersen_seed        = 815131
   rlist                = 1
   rtpi                 = 0.05
   coulombtype          = PME
   rcoulomb_switch      = 0
   rcoulomb             = 1
   vdwtype              = Cut-off
   rvdw_switch          = 0
   rvdw                 = 1.4
   epsilon_r            = 1
   epsilon_rf           = 1
   tabext               = 1
   implicit_solvent     = No
   gb_algorithm         = Still
   gb_epsilon_solvent   = 80
   nstgbradii           = 1
   rgbradii             = 2
   gb_saltconc          = 0
   gb_obc_alpha         = 1
   gb_obc_beta          = 0.8
   gb_obc_gamma         = 4.85
   sa_surface_tension   = 2.092
   DispCorr             = No
   free_energy          = no
   init_lambda          = 0
   sc_alpha             = 0
   sc_power             = 0
   sc_sigma             = 0.3
   delta_lambda         = 0
   nwall                = 0
   wall_type            = 9-3
   wall_atomtype[0]     = -1
   wall_atomtype[1]     = -1
   wall_density[0]      = 0
   wall_density[1]      = 0
   wall_ewald_zfac      = 3
   pull                 = no
   disre                = No
   disre_weighting      = Conservative
   disre_mixed          = FALSE
   dr_fc                = 1000
   dr_tau               = 0
   nstdisreout          = 100
   orires_fc            = 0
   orires_tau           = 0
   nstorireout          = 100
   dihre-fc             = 1000
   em_stepsize          = 0.01
   em_tol               = 10
   niter                = 20
   fc_stepsize          = 0
   nstcgsteep           = 1000
   nbfgscorr            = 10
   ConstAlg             = Lincs
   shake_tol            = 0.0001
   lincs_order          = 4
   lincs_warnangle      = 30
   lincs_iter           = 1
   bd_fric              = 0
   ld_seed              = 1993
   cos_accel            = 0
   deform (3x3):
      deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
      deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
   userint1             = 0
   userint2             = 0
   userint3             = 0
   userint4             = 0
   userreal1            = 0
   userreal2            = 0
   userreal3            = 0
   userreal4            = 0
grpopts:
   nrdf:     3489.83     56703.2     41.9979
   ref_t:         300         300         300
   tau_t:         0.1         0.1         0.1
anneal:          No          No          No
ann_npoints:           0           0           0
   acc:            0           0           0
   nfreeze:           N           N           N
   energygrp_flags[  0]: 0 0
   energygrp_flags[  1]: 0 0
   efield-x:
      n = 0
   efield-xt:
      n = 0
   efield-y:
      n = 0
   efield-yt:
      n = 0
   efield-z:
      n = 0
   efield-zt:
      n = 0
   bQMMM                = FALSE
   QMconstraints        = 0
   QMMMscheme           = 0
   scalefactor          = 1
qm_opts:
   ngQM                 = 0

Initializing Domain Decomposition on 8 nodes
Dynamic load balancing: auto
Will sort the charge groups at every domain (re)decomposition
Initial maximum inter charge-group distances:
    two-body bonded interactions: 0.614 nm, LJ-14, atoms 1485 1492
  multi-body bonded interactions: 0.614 nm, Proper Dih., atoms 1485 1492
Minimum cell size due to bonded interactions: 0.675 nm
Maximum distance for 5 constraints, at 120 deg. angles, all-trans: 0.876 nm
Estimated maximum distance required for P-LINCS: 0.876 nm
This distance will limit the DD cell size, you can override this with -rcon
Using 0 separate PME nodes
Scaling the initial minimum size with 1/0.8 (option -dds) = 1.25
Optimizing the DD grid for 8 cells with a minimum initial size of 1.095 nm
The maximum allowed number of cells is: X 5 Y 5 Z 5
Domain decomposition grid 4 x 2 x 1, separate PME nodes 0
Domain decomposition nodeid 0, coordinates 0 0 0

Table routines are used for coulomb: TRUE
Table routines are used for vdw:     FALSE
Will do PME sum in reciprocal space.

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
U. Essman, L. Perela, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen 
A smooth particle mesh Ewald method
J. Chem. Phys. 103 (1995) pp. 8577-8592
-------- -------- --- Thank You --- -------- --------

Using a Gaussian width (1/beta) of 0.320163 nm for Ewald
Cut-off's:   NS: 1   Coulomb: 1   LJ: 1.4
System total charge: 0.000
Generated table with 4799 data points for Ewald.
Tabscale = 2000 points/nm
Generated table with 4799 data points for LJ6.
Tabscale = 2000 points/nm
Generated table with 4799 data points for LJ12.
Tabscale = 2000 points/nm
Generated table with 4799 data points for 1-4 COUL.
Tabscale = 2000 points/nm
Generated table with 4799 data points for 1-4 LJ6.
Tabscale = 2000 points/nm
Generated table with 4799 data points for 1-4 LJ12.
Tabscale = 2000 points/nm

Enabling SPC water optimization for 9451 molecules.

Configuring nonbonded kernels...
Testing x86_64 SSE2 support... present.


Removing pbc first time

Initializing Parallel LINear Constraint Solver

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess
P-LINCS: A Parallel Linear Constraint Solver for molecular simulation
J. Chem. Theory Comput. 4 (2008) pp. 116-122
-------- -------- --- Thank You --- -------- --------

The number of constraints is 1787
There are inter charge-group constraints,
will communicate selected coordinates each lincs iteration

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models
J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------


Linking all bonded interactions to atoms
There are 6229 inter charge-group exclusions,
will use an extra communication step for exclusion forces for PME

The initial number of communication pulses is: X 1 Y 1
The initial domain decomposition cell size is: X 1.55 nm Y 3.02 nm

The maximum allowed distance for charge groups involved in interactions is:
                 non-bonded interactions           1.400 nm
(the following are initial values, they could change due to box deformation)
            two-body bonded interactions  (-rdd)   1.400 nm
          multi-body bonded interactions  (-rdd)   1.400 nm
  atoms separated by up to 5 constraints  (-rcon)  1.551 nm

When dynamic load balancing gets turned on, these settings will change to:
The maximum number of communication pulses is: X 2 Y 1
The minimum size for domain decomposition cells is 1.082 nm
The requested allowed shrink of DD cells (option -dds) is: 0.80
The allowed shrink of domain decomposition cells is: X 0.70 Y 0.46
The maximum allowed distance for charge groups involved in interactions is:
                 non-bonded interactions           1.400 nm
            two-body bonded interactions  (-rdd)   1.400 nm
          multi-body bonded interactions  (-rdd)   1.082 nm
  atoms separated by up to 5 constraints  (-rcon)  1.082 nm


Making 2D domain decomposition grid 4 x 2 x 1, home cell index 0 0 0

Center of mass motion removal mode is Linear
We have the following groups for center of mass motion removal:
  0:  rest

++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, J. P. M. Postma, A. DiNola and J. R. Haak
Molecular dynamics with coupling to an external bath
J. Chem. Phys. 81 (1984) pp. 3684-3690
-------- -------- --- Thank You --- -------- --------

There are: 30126 Atoms
Charge group distribution at step 0: 1295 1280 1281 1276 1309 1258 1283 1274
Grid: 11 x 13 x 9 cells

Constraining the starting coordinates (step 0)

Constraining the coordinates at t0-dt (step 0)
RMS relative constraint deviation after constraining: 3.73e-05
Initial temperature: 300.99 K
_______________________________________________
gmx-users mailing list    [email protected]
http://www.gromacs.org/mailman/listinfo/gmx-users
Please search the archive at http://www.gromacs.org/search before posting!
Please don't post (un)subscribe requests to the list. Use the 
www interface or send it to [email protected].
Can't post? Read http://www.gromacs.org/mailing_lists/users.php

Reply via email to