Hi,

For the record there is also the -reprod (reproducibility) that also turns off the dynamic FFTW plan optimization. With these options enabled you will lose a bit of performance, but should get binary identical runs even in parallel (as long as you use the same number of CPUs).

Cheers,

Erik


On Jun 7, 2009, at 9:20 AM, David van der Spoel wrote:

Jim Kress wrote:
I've been doing multiple runs using gromacs v 4.0.5 mdrun and a constant topol.tpr input file. Unfortunately, the results that I get in my md.log
differ from run to run.

This is due to dynamic load balancing. Due to fluctuations in the CPU usage (e.g. due to operating system) your load will vary on each CPU and gromacs will try to balance it. Hence you get numerical differences because in a computer (a+b)+c != a+(b+c), and ultimately the trajectories will diverge.

If you turn off dlb this should not happen. Please try it and report if you see the same effect without.

For example, Run 1
Started mdrun on node 0 Fri May 22 22:53:51 2009
          Step           Time         Lambda
             0        0.00000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 1.95406e+02 1.04746e+02 4.97704e+01 4.13260e+01 1.40158e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.60139e+03 -2.64656e+04 -2.20714e+04 4.03780e+03 -1.80336e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.03142e+02   -8.46977e+02    1.92470e-05
DD  step 9 load imb.: force 29.9%
At step 10 the performance loss due to force load imbalance is 8.6 %
NOTE: Turning on dynamic load balancing
DD  step 99  vol min/aver 0.731  load imb.: force  6.9%
          Step           Time         Lambda
           100        0.20000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.05310e+02 1.30129e+02 5.63474e+01 1.81814e+01 1.44270e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.69491e+03 -2.69624e+04 -2.24148e+04 4.19456e+03 -1.82203e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.14910e+02   -5.19031e+02    1.76248e-05
DD  load balancing is limited by minimum cell size in dimension Y
DD  step 199  vol min/aver 0.766! load imb.: force 10.7%
          Step           Time         Lambda
           200        0.40000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.20550e+02 1.09068e+02 6.93319e+01 5.32511e+01 1.43458e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.78241e+03 -2.70319e+04 -2.23627e+04 4.13455e+03 -1.82281e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.10405e+02   -5.01205e+02    1.70105e-05
DD  load balancing is limited by minimum cell size in dimension Y
DD  step 299  vol min/aver 0.750! load imb.: force  3.3%
          Step           Time         Lambda
           300        0.60000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.17474e+02 8.65489e+01 5.24995e+01 4.72592e+01 1.44419e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 3.17643e+03 -2.72841e+04 -2.22597e+04 3.95024e+03 -1.83095e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   2.96568e+02    1.40098e+03    1.55861e-05
DD  step 399  vol min/aver 0.700  load imb.: force  5.9%
          Step           Time         Lambda
           400        0.80000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.43143e+02 9.93116e+01 7.16796e+01 4.63666e+01 1.46722e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.84150e+03 -2.70065e+04 -2.22372e+04 4.05976e+03 -1.81775e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.04791e+02    2.48551e+02    1.61141e-05
DD  step 499  vol min/aver 0.678  load imb.: force  6.6%
          Step           Time         Lambda
           500        1.00000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.19638e+02 8.98359e+01 8.99946e+01 5.16612e+01 1.46338e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.80267e+03 -2.68507e+04 -2.21335e+04 4.14195e+03 -1.79916e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.10961e+02   -1.17210e+02    1.71420e-05
DD  step 599  vol min/aver 0.678  load imb.: force  6.7%
          Step           Time         Lambda
           600        1.20000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.32938e+02 1.04322e+02 7.11343e+01 2.16046e+01 1.45770e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 3.07425e+03 -2.71320e+04 -2.21700e+04 4.17285e+03 -1.79972e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.13281e+02    5.60002e+01    1.97532e-05
DD  step 699  vol min/aver 0.664  load imb.: force 13.1%
----------------------------------------------------------------------------
-------------------------------------
Run 2
Step 0 is the same, but then the results start to differ more and more:
Started mdrun on node 0 Sat Jun  6 14:38:03 2009
          Step           Time         Lambda
             0        0.00000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 1.95406e+02 1.04746e+02 4.97704e+01 4.13260e+01 1.40158e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.60139e+03 -2.64656e+04 -2.20714e+04 4.03780e+03 -1.80336e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.03142e+02   -8.46977e+02    1.92470e-05
DD  step 9 load imb.: force 32.9%
At step 10 the performance loss due to force load imbalance is 8.8 %
NOTE: Turning on dynamic load balancing
DD  load balancing is limited by minimum cell size in dimension Y
DD  step 99  vol min/aver 0.711! load imb.: force 13.3%
          Step           Time         Lambda
           100        0.20000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.05314e+02 1.30130e+02 5.63508e+01 1.81808e+01 1.44270e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.69491e+03 -2.69627e+04 -2.24151e+04 4.19468e+03 -1.82204e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.14919e+02   -5.13520e+02    1.76037e-05
DD  load balancing is limited by minimum cell size in dimension Y Z
DD  step 199  vol min/aver 0.760! load imb.: force 12.7%
          Step           Time         Lambda
           200        0.40000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.20600e+02 1.09011e+02 6.92931e+01 5.32915e+01 1.43453e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.78045e+03 -2.70297e+04 -2.23626e+04 4.13378e+03 -1.82288e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.10348e+02   -5.07193e+02    1.69736e-05
DD  load balancing is limited by minimum cell size in dimension Y
DD  step 299  vol min/aver 0.757! load imb.: force 12.1%
          Step           Time         Lambda
           300        0.60000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.18647e+02 8.76939e+01 5.26630e+01 4.67556e+01 1.44438e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 3.15118e+03 -2.72121e+04 -2.22108e+04 3.91294e+03 -1.82978e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   2.93768e+02    1.36397e+03    1.56756e-05
DD  load balancing is limited by minimum cell size in dimension Y Z
DD  step 399  vol min/aver 0.688! load imb.: force 12.6%
          Step           Time         Lambda
           400        0.80000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.37290e+02 9.91231e+01 6.10010e+01 3.87031e+01 1.46621e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.68805e+03 -2.68308e+04 -2.22404e+04 4.05083e+03 -1.81896e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.04120e+02   -2.55369e+02    1.63518e-05
DD  load balancing is limited by minimum cell size in dimension Z
DD  step 499  vol min/aver 0.677! load imb.: force 10.1%
          Step           Time         Lambda
           500        1.00000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.30361e+02 8.47035e+01 8.84842e+01 4.44614e+01 1.44045e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.91452e+03 -2.70665e+04 -2.22635e+04 4.18886e+03 -1.80746e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.14483e+02    1.47268e+02    1.75008e-05
DD  load balancing is limited by minimum cell size in dimension Z
DD  step 599  vol min/aver 0.692! load imb.: force  7.7%
          Step           Time         Lambda
           600        1.20000        0.00000
  Energies (kJ/mol)
G96Angle Proper Dih. Improper Dih. LJ-14 Coulomb-14 2.19896e+02 9.93832e+01 6.10071e+01 2.95745e+01 1.45874e+03 LJ (SR) Coulomb (SR) Potential Kinetic En. Total Energy 2.81555e+03 -2.71300e+04 -2.24458e+04 4.17303e+03 -1.82728e+04
   Temperature Pressure (bar)  Cons. rmsd ()
   3.13294e+02   -3.05949e+02    1.64990e-05
DD  load balancing is limited by minimum cell size in dimension Z
DD  step 699  vol min/aver 0.719! load imb.: force  4.9%
----------------------------------------------------------------------------
--------------------
Any ideas why I am seeing this?
Here is the initial mdrun printed input info:
                        :-)  G  R  O  M  A  C  S  (-:
                  Groningen Machine for Chemical Simulation
                           :-)  VERSION 4.0.5  (-:
Written by David van der Spoel, Erik Lindahl, Berk Hess, and others. Copyright (c) 1991-2000, University of Groningen, The Netherlands.
            Copyright (c) 2001-2008, The GROMACS development team,
           check out http://www.gromacs.org for more information.
        This program is free software; you can redistribute it and/or
         modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
            of the License, or (at your option) any later version.
                             :-)  mdrun_mpi  (-:
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess and C. Kutzner and D. van der Spoel and E. Lindahl GROMACS 4:
Algorithms for highly efficient, load-balanced, and scalable molecular
simulation J. Chem. Theory Comput. 4 (2008) pp. 435-447
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark and H. J. C.
Berendsen
GROMACS: Fast, Flexible and Free
J. Comp. Chem. 26 (2005) pp. 1701-1719
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
E. Lindahl and B. Hess and D. van der Spoel GROMACS 3.0: A package for molecular simulation and trajectory analysis J. Mol. Mod. 7 (2001) pp.
306-317
-------- -------- --- Thank You --- -------- --------
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, D. van der Spoel and R. van Drunen
GROMACS: A message-passing parallel molecular dynamics implementation Comp.
Phys. Comm. 91 (1995) pp. 43-56
-------- -------- --- Thank You --- -------- --------
parameters of the run:
  integrator           = md
  nsteps               = 5000000
  init_step            = 0
  ns_type              = Grid
  nstlist              = 10
  ndelta               = 2
  nstcomm              = 1
  comm_mode            = Linear
  nstlog               = 100
  nstxout              = 50
  nstvout              = 0
  nstfout              = 0
  nstenergy            = 100
  nstxtcout            = 0
  init_t               = 0
  delta_t              = 0.002
  xtcprec              = 1000
  nkx                  = 0
  nky                  = 0
  nkz                  = 0
  pme_order            = 4
  ewald_rtol           = 1e-05
  ewald_geometry       = 0
  epsilon_surface      = 0
  optimize_fft         = FALSE
  ePBC                 = xyz
  bPeriodicMols        = FALSE
  bContinuation        = FALSE
  bShakeSOR            = FALSE
  etc                  = Berendsen
  epc                  = No
  epctype              = Isotropic
  tau_p                = 0.5
  ref_p (3x3):
     ref_p[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
     ref_p[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
     ref_p[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
  compress (3x3):
     compress[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
     compress[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
     compress[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
  refcoord_scaling     = No
  posres_com (3):
     posres_com[0]= 0.00000e+00
     posres_com[1]= 0.00000e+00
     posres_com[2]= 0.00000e+00
  posres_comB (3):
     posres_comB[0]= 0.00000e+00
     posres_comB[1]= 0.00000e+00
     posres_comB[2]= 0.00000e+00
  andersen_seed        = 815131
  rlist                = 1
  rtpi                 = 0.05
  coulombtype          = Cut-off
  rcoulomb_switch      = 0
  rcoulomb             = 1
  vdwtype              = Cut-off
  rvdw_switch          = 0
  rvdw                 = 1
  epsilon_r            = 1
  epsilon_rf           = 1
  tabext               = 1
  implicit_solvent     = No
  gb_algorithm         = Still
  gb_epsilon_solvent   = 80
  nstgbradii           = 1
  rgbradii             = 2
  gb_saltconc          = 0
  gb_obc_alpha         = 1
  gb_obc_beta          = 0.8
  gb_obc_gamma         = 4.85
  sa_surface_tension   = 2.092
  DispCorr             = No
  free_energy          = no
  init_lambda          = 0
  sc_alpha             = 0
  sc_power             = 0
  sc_sigma             = 0.3
  delta_lambda         = 0
  nwall                = 0
  wall_type            = 9-3
  wall_atomtype[0]     = -1
  wall_atomtype[1]     = -1
  wall_density[0]      = 0
  wall_density[1]      = 0
  wall_ewald_zfac      = 3
  pull                 = no
  disre                = No
  disre_weighting      = Conservative
  disre_mixed          = FALSE
  dr_fc                = 1000
  dr_tau               = 0
  nstdisreout          = 100
  orires_fc            = 0
  orires_tau           = 0
  nstorireout          = 100
  dihre-fc             = 1000
  em_stepsize          = 0.01
  em_tol               = 10
  niter                = 20
  fc_stepsize          = 0
  nstcgsteep           = 1000
  nbfgscorr            = 10
  ConstAlg             = Lincs
  shake_tol            = 0.0001
  lincs_order          = 4
  lincs_warnangle      = 30
  lincs_iter           = 1
  bd_fric              = 0
  ld_seed              = 1993
  cos_accel            = 0
  deform (3x3):
     deform[    0]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
     deform[    1]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
     deform[    2]={ 0.00000e+00,  0.00000e+00,  0.00000e+00}
  userint1             = 0
  userint2             = 0
  userint3             = 0
  userint4             = 0
  userreal1            = 0
  userreal2            = 0
  userreal3            = 0
  userreal4            = 0
grpopts:
  nrdf:     284.733     2919.27
  ref_t:         300         300
  tau_t:         0.1         0.1
anneal:          No          No
ann_npoints:           0           0
  acc:             0           0           0
  nfreeze:           N           N           N
  energygrp_flags[  0]: 0
  efield-x:
     n = 0
  efield-xt:
     n = 0
  efield-y:
     n = 0
  efield-yt:
     n = 0
  efield-z:
     n = 0
  efield-zt:
     n = 0
  bQMMM                = FALSE
  QMconstraints        = 0
  QMMMscheme           = 0
  scalefactor          = 1
qm_opts:
  ngQM                 = 0
Initializing Domain Decomposition on 12 nodes Dynamic load balancing: auto
Will sort the charge groups at every domain (re)decomposition Initial
maximum inter charge-group distances:
   two-body bonded interactions: 0.597 nm, LJ-14, atoms 5 18
multi-body bonded interactions: 0.597 nm, Proper Dih., atoms 5 18 Minimum
cell size due to bonded interactions: 0.657 nm Maximum distance for 5
constraints, at 120 deg. angles, all-trans: 0.820 nm Estimated maximum distance required for P-LINCS: 0.820 nm This distance will limit the DD cell size, you can override this with -rcon Scaling the initial minimum size with
1/0.8 (option -dds) = 1.25 Optimizing the DD grid for 12 cells with a
minimum initial size of 1.025 nm The maximum allowed number of cells is: X 2 Y 3 Z 2 Domain decomposition grid 2 x 3 x 2, separate PME nodes 0 Domain
decomposition nodeid 0, coordinates 0 0 0
Table routines are used for coulomb: FALSE
Table routines are used for vdw:     FALSE
Cut-off's:   NS: 1   Coulomb: 1   LJ: 1
System total charge: 1.000
Generated table with 1000 data points for 1-4 COUL.
Tabscale = 500 points/nm
Generated table with 1000 data points for 1-4 LJ6.
Tabscale = 500 points/nm
Generated table with 1000 data points for 1-4 LJ12.
Tabscale = 500 points/nm
Enabling SPC water optimization for 487 molecules.
Configuring nonbonded kernels...
Testing x86_64 SSE support... present.
Removing pbc first time
Initializing Parallel LINear Constraint Solver
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
B. Hess
P-LINCS: A Parallel Linear Constraint Solver for molecular simulation J.
Chem. Theory Comput. 4 (2008) pp. 116-122
-------- -------- --- Thank You --- -------- --------
The number of constraints is 144
There are inter charge-group constraints, will communicate selected
coordinates each lincs iteration
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
S. Miyamoto and P. A. Kollman
SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithms for Rigid
Water Models J. Comp. Chem. 13 (1992) pp. 952-962
-------- -------- --- Thank You --- -------- --------
Linking all bonded interactions to atoms
The initial number of communication pulses is: X 1 Y 1 Z 1 The initial
domain decomposition cell size is: X 1.21 nm Y 1.05 nm Z 1.11 nm
The maximum allowed distance for charge groups involved in interactions is:
                non-bonded interactions           1.000 nm
           two-body bonded interactions  (-rdd)   1.000 nm
         multi-body bonded interactions  (-rdd)   1.000 nm
 atoms separated by up to 5 constraints  (-rcon)  1.054 nm
When dynamic load balancing gets turned on, these settings will change to: The maximum number of communication pulses is: X 1 Y 2 Z 1 The minimum size for domain decomposition cells is 0.826 nm The requested allowed shrink of DD cells (option -dds) is: 0.80 The allowed shrink of domain decomposition cells is: X 0.82 Y 0.78 Z 0.90 The maximum allowed distance for charge
groups involved in interactions is:
                non-bonded interactions           1.000 nm
           two-body bonded interactions  (-rdd)   1.000 nm
         multi-body bonded interactions  (-rdd)   0.826 nm
 atoms separated by up to 5 constraints  (-rcon)  0.826 nm
Making 3D domain decomposition grid 2 x 3 x 2, home cell index 0 0 0
Center of mass motion removal mode is Linear We have the following groups
for center of mass motion removal:
 0:  rest
++++ PLEASE READ AND CITE THE FOLLOWING REFERENCE ++++
H. J. C. Berendsen, J. P. M. Postma, A. DiNola and J. R. Haak Molecular dynamics with coupling to an external bath J. Chem. Phys. 81 (1984) pp.
3684-3690
-------- -------- --- Thank You --- -------- --------
There are: 1604 Atoms
Charge group distribution at step 0: 45 50 45 42 46 41 44 45 41 47 51 47
Grid: 4 x 4 x 4 cells
Constraining the starting coordinates (step 0)
Constraining the coordinates at t0-dt (step 0) RMS relative constraint
deviation after constraining: 2.38e-05 Initial temperature: 299.151 K
Which is, of course, identical between the runs.
Thanks for any comments/ advice.
Jim
_______________________________________________
gmx-users mailing list    [email protected]
http://lists.gromacs.org/mailman/listinfo/gmx-users
Please search the archive at http://www.gromacs.org/search before posting! Please don't post (un)subscribe requests to the list. Use the www interface or send it to [email protected].
Can't post? Read http://www.gromacs.org/mailing_lists/users.php


--
David.
________________________________________________________________________
David van der Spoel, PhD, Professor of Biology
Dept. of Cell and Molecular Biology, Uppsala University.
Husargatan 3, Box 596,          75124 Uppsala, Sweden
phone:  46 18 471 4205          fax: 46 18 511 755
[email protected]    [email protected]   http://folding.bmc.uu.se
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++
_______________________________________________
gmx-users mailing list    [email protected]
http://lists.gromacs.org/mailman/listinfo/gmx-users
Please search the archive at http://www.gromacs.org/search before posting! Please don't post (un)subscribe requests to the list. Use the www interface or send it to [email protected].
Can't post? Read http://www.gromacs.org/mailing_lists/users.php


------------
Erik Lindahl   <[email protected]>  Backup: <[email protected]>
Associate Professor, Computational Structural Biology
Center for Biomembrane Research, Dept. Biochemistry & Biophysics
Stockholm University, SE-106 91 Stockholm, Sweden
Tel: +46(0)8164675  Mobile: +46(0)703844534  Fax: mail a PDF instead






_______________________________________________
gmx-users mailing list    [email protected]
http://lists.gromacs.org/mailman/listinfo/gmx-users
Please search the archive at http://www.gromacs.org/search before posting!
Please don't post (un)subscribe requests to the list. Use the www interface or send it to [email protected].
Can't post? Read http://www.gromacs.org/mailing_lists/users.php

Reply via email to