Dear Tiago,

I would like to fit an SBM with the /minimize_blockmodel_dl()/ function.
Specifically, I would like to customize the optimization procedure with
different priors for the model parameters. I am aware that
/BlockState.entropy()/ returns the entropy (for fitting to SBM) with
*labelled* input (partition & degree sequence), and /model_entropy()/
returns the entropy (for constructing the model) with *static* input (B, N,
E). However, I don't see an argument in the /minimize_blockmodel_dl()/
function that I could enforce certain parameter priors at the first place,
be it /degree_dl_kind == "uniform"/ or /degree_dl_kind == "distributed"/.

Do I miss something from the documentation? For example, may I customize
/state_args/ in /minimize_blockmodel_dl()/ for this purpose?


Sincerely thanks,
Tzu-Chi



--
Sent from: 
http://main-discussion-list-for-the-graph-tool-project.982480.n3.nabble.com/
_______________________________________________
graph-tool mailing list
[email protected]
https://lists.skewed.de/mailman/listinfo/graph-tool

Reply via email to