Dear GRASS developers,
Today I finished a first attempt at writing a GRASS script in python for
probabilistic label relaxation.
The script uses a given sigfile to run i.maxlik for _every_ given
signature and save the reject threshold results.
These results are used as input for the relaxation process.
This first version is v e r y slow (~ 2 min) for a 150x200 cell region
and also the assignment of probabilities for 2 classes being next to
each other is still very basic (1.0 if the classes are the same, 0.5 if
not). But anyway, it seems to be working!
This will be part of my diploma thesis and I would like to hear your
comments. Naturally I am very interested in speeding up the whole process...
This is my first self-made script for GRASS (not counting small
helper-scripts), so please be kind ;)
best regards,
Georg
#!/usr/bin/env python
#
#############################################################################
#
# MODULE: i.plr.py
# AUTHOR(S): Georg Kaspar
# PURPOSE: Probabilistic label relaxation, postclassification filter
# COPYRIGHT: (C) 2009
#
# This program is free software under the GNU General Public
# License (>=v2). Read the file COPYING that comes with GRASS
# for details.
#
#############################################################################
#%Module
#% description: Probabilistic label relaxation, postclassification filter
#%End
#%option
#% key: maxlik
#% type: string
#% description: classification results
#% required : yes
#%end
#%option
#% key: group
#% type: string
#% description: image group to be used
#% required : yes
#%end
#%option
#% key: subgroup
#% type: string
#% description: image subgroup to be used
#% required : yes
#%end
#%option
#% key: sigfile
#% type: string
#% description: Path to sigfile
#% required : yes
#%end
#%option
#% key: output
#% type: string
#% description: Name for resulting raster file
#% required : no
#%end
#%option
#% key: iterations
#% type: integer
#% description: Number of iterations (1 by default)
#% required : no
#%end
import sys
import os
import numpy
import grass.script as grass
from osgeo import gdal, gdalnumeric, gdal_array
from osgeo.gdalconst import GDT_Byte
def getMetadata():
env = grass.gisenv()
global GISDBASE
global LOCATION_NAME
global MAPSET
GISDBASE = env['GISDBASE']
LOCATION_NAME = env['LOCATION_NAME']
MAPSET = env['MAPSET']
def splitSignatures(path, sigfile):
# split signature file into subfiles with 1 signature each
stream_in = open(path + sigfile, "r")
stream_in.next() # skip header
counter = 0
i = 1
for line in stream_in:
if (i % 7) == 1:
counter += 1
stream_out = open(path + "plr_" + str(counter) + ".sig", "w")
stream_out.write("#produced by i.plr\n")
stream_out.write(line)
if (i % 7) == 0:
stream_out.close()
i += 1
stream_in.close()
return counter
def normalizeProbabilities(counter):
arg = ""
for i in range(counter):
arg = arg + "+plr_rej_" + str(i)
arg = arg.strip('+')
print "calculating multiplicands, arg=" + arg
grass.run_command("r.mapcalc", multiplicand = "1./(" + arg + ")")
for i in range(counter):
print "normalizing probabilities for class " + str(i)
grass.run_command("r.mapcalc", plr_rej_norm = "plr_rej_" + str(i) + "*multiplicand")
grass.run_command("g.rename", rast="plr_rej_norm,plr_rej_norm_" + str(i))
def getProbability(a,b):
# TODO: Implement this!!!
if a == b:
return 1
else:
return 0.5
def cleanUp(path):
os.system("rm " + path + "/plr_*.*")
os.system("rm /tmp/plr_*.*")
grass.run_command("g.mremove", flags="f", quiet=True, rast="plr_*")
def plr_filter(probabilities, width, height, classes, iterations):
print str(iterations) + " iteration(s) to go..."
print "Image size: " + str(width) + "x" + str(height)
# create an empty n-dimesional array containing results
results = numpy.ones((classes,height,width))
progress = 0
# for each pixel (except border)
for y in range(1, height-1):
p = int(float(y)/height * 100)
if p > progress:
print str(p) + "% done"
progress = p
for x in range(1, width-1):
p = [0]
q = [0]
# for all classes create neighbourhood and extract probabilities
for c in range(1, classes+1):
q.append(neighbourhoodFunction(probabilities, x, y, c, classes))
p.append(probabilities[c-1, y, x])
# resulting cell contains the product of class probability and
# neighbourhood-function divided by their sums so that each set of
# probabilities sums to one
for c in range(1, classes+1):
#results[c-1,y,x] = (p[c] + q[c]) / float((sum(p) + sum(q)))
results[c-1,y,x] = p[c] + q[c]
print ""
if iterations > 1:
return plr_filter(probabilities, width, height, classes, int(iterations)-1)
else:
return createMap(results, width, height, classes)
def neighbourhoodFunction(probabilities, x, y, z, classes):
n = []
for j in range(y-1, y+2):
for i in range(x-1, x+2):
l = []
# for each possible class
for c in range(1, classes+1):
l.append(getProbability(z, c) * float(probabilities[c-1,j,i]))
n.append(sum(l))
return sum(n)
def createMap(probabilities, width, height, classes):
print "retrieving class labels"
results = numpy.ones((height,width))
progress = 0
for y in range(height):
p = int(float(y)/height * 100)
if p > progress:
print str(p) + "% done"
progress = p
for x in range(width):
max_class = 1
max_val = probabilities[0,y,x]
for c in range(2, classes+1):
current_val = probabilities[c-1,y,x]
if current_val > max_val:
max_val = current_val
max_class = c
results[y,x] = max_class
#results = probabilities.max(0)
return results;
def export(array, trans, proj):
driver = gdal.GetDriverByName('GTiff')
out = driver.Create('/tmp/plr_results.tif', array.shape[1], array.shape[0], 1, GDT_Byte)
out.SetGeoTransform(trans)
out.SetProjection(proj)
gdal_array.BandWriteArray(out.GetRasterBand(1), array)
def main():
# fetch parameters
maxlik = options['maxlik']
group = options['group']
subgroup = options['subgroup']
sigfile = options['sigfile']
output = options['output']
iterations = options['iterations']
if iterations == "":
iterations = 1
# fetch Metadata
getMetadata()
# split sigfiles
sigpath = GISDBASE + "/" + LOCATION_NAME + "/" + MAPSET + "/group/" + group + "/subgroup/" + subgroup + "/sig/"
counter = splitSignatures(sigpath, sigfile)
print "found " + str(counter) + " signatures"
l = []
for i in range(1, counter+1):
# extract probabilities
print "extracting probabilities for class " + str(i)
grass.run_command("i.maxlik", group=group, subgroup=subgroup, sigfile="plr_" + str(i) + ".sig", clas="plr_class" + str(i), reject="plr_rej_" + str(i))
# export from GRASS
print "exporting probabilities for class " + str(i) + " to /tmp"
grass.run_command("r.out.gdal", inp="plr_rej_" + str(i), out="/tmp/plr_rej_" + str(i) + ".tif")
# import via gdal
print "reading file"
tif = gdal.Open("/tmp/plr_rej_" + str(i) + ".tif")
l.append(tif.ReadAsArray())
if i == 1:
width = l[0].shape[1]
height = l[0].shape[0]
trans = tif.GetGeoTransform()
proj = tif.GetProjection()
# create n-dimensional array
print "creating 3D-array"
probabilities = numpy.array(l)
# invoke relaxation process
print "now invoking relaxation process, go and get some coffee..."
results = plr_filter(probabilities, width, height, counter, iterations)
print "all done!"
# exporting results
print "exporting results to /tmp"
export(results, trans, proj)
# import via gdal into GRASS
print "reading results"
if output == "":
output = maxlik + ".plr"
print "no output name given, resulting file ist saved as " + maxlik + ".plr"
grass.run_command("r.in.gdal", inp="/tmp/plr_results.tif", out=output)
grass.run_command("r.colors", map=output, raster=maxlik)
# clean up
print "removing temporary files"
cleanUp(sigpath)
if __name__ == "__main__":
options, flags = grass.parser()
main()
_______________________________________________
grass-dev mailing list
[email protected]
http://lists.osgeo.org/mailman/listinfo/grass-dev