Hi,

As suggested by Jaro, by
- commenting out all the pj_do_proj() stuff, and
- re-enabling sin(sunVarGeom->sunAzimuthAngle), and
- using the -s shading flag, and
- not using horizon maps,

I get the same exact output values as with my patch (attached), which
replaces the proper pj_do_proj() reprojection with a simple cosine
pseudo-projection.

Both Jaro's and my patches give slightly different results than the
current SVN version based on pj_do_proj(). Looking at the test results
from using a Gaussian mound the pj_() version seems to be rotated counter-
clockwise by a little bit compared to the others. My best guess is that
this is due to the 0.9 degree difference between grid-north and
true-north at this site (`g.region -n`), as it is the pj_do_proj()
version which seems to be slightly askew, the others seem to be 
symmetric. But perhaps that rotation is more than 1 deg?


# spearfish dataset
g.region -dp
r.surf.volcano out=gauss method=gaussian kurtosis=1


# current r.sun in grass 6.5svn ( using pj_do_proj() )
time r.sun -s elevin="gauss" glob_rad="rad.global.30minT.65svn" day=180
step=0.5 real    3m19.480s
  user    3m6.108s
  sys     0m2.500s


# Jaro's patch ( revert back to setting from sunAzimuthAngle )
time r.sun -s elevin="gauss" glob_rad="rad.global.30minT.sunAzimuthAngle"
day=180 step=0.5 real    2m58.834s
  user    2m50.555s
  sys     0m1.188s


# My patch ( attached; replace pj_do_proj() with lon*cos(lat) scaling )
time r.sun -s elevin="gauss" glob_rad="rad.global.30minT.coslat" day=180
step=0.5 real    3m12.652s
  user    2m52.727s
  sys     0m1.424s



# compare results
for map in 65svn sunAzimuthAngle coslat ; do
  echo "[$map]"
  r.univar rad.global.30minT.$map -g | grep 'mean=\|stddev=\|sum='
  echo
done

[65svn]
mean=8788.2168789737
stddev=40.3700050839272
sum=2657714972.10546875

[sunAzimuthAngle]
mean=8788.04781049377
stddev=40.3848632592666
sum=2657663842.75390625

[coslat]
mean=8788.04781049377
stddev=40.3848632592666
sum=2657663842.75390625


# view
d.erase
for map in 65svn sunAzimuthAngle coslat ; do
   echo "[$map]"; d.rast rad.global.30minT.$map
   d.title -s rad.global.30minT.$map | d.text
   read
done


(the Gaussian mound also shows why a small step size like 0.05 is so
important, which may finally be made practical by GPU acceleration. see
  http://grass.osgeo.org/wiki/r.sun#Time_step )


regards,
Hamish
Index: raster/r.sun/rsunlib.c
===================================================================
--- raster/r.sun/rsunlib.c	(revision 42938)
+++ raster/r.sun/rsunlib.c	(working copy)
@@ -188,14 +188,11 @@
 	     struct GridGeometry *gridGeom, double latitude, double longitude)
 {
     double pom, xpom, ypom;
-
     double costimeAngle;
     double lum_Lx, lum_Ly;
-
-    double newLatitude, newLongitude;
     double inputAngle;
     double delt_lat, delt_lon;
-    double delt_east, delt_nor;
+    double delt_lat_m, delt_lon_m;
     double delt_dist;
 
 
@@ -247,7 +244,6 @@
     }
 
 
-
     if (sunVarGeom->solarAzimuth < 0.5 * M_PI)
 	sunVarGeom->sunAzimuthAngle = 0.5 * M_PI - sunVarGeom->solarAzimuth;
     else
@@ -257,33 +253,22 @@
     inputAngle = sunVarGeom->sunAzimuthAngle + pihalf;
     inputAngle = (inputAngle >= pi2) ? inputAngle - pi2 : inputAngle;
 
-
+    /* 1852m * 60 * 0.0001rad * 180/pi= 636.67m */
     delt_lat = -0.0001 * cos(inputAngle);  /* Arbitrary small distance in latitude */
     delt_lon = 0.0001 * sin(inputAngle) / cos(latitude);
 
-    newLatitude = (latitude + delt_lat) * rad2deg;
-    newLongitude = (longitude + delt_lon) * rad2deg;
+    delt_lat_m = delt_lat * (180/M_PI) * 1852*60;
+    delt_lon_m = delt_lon * (180/M_PI) * 1852*60 * cos(latitude);
+    delt_dist = sqrt(delt_lat_m * delt_lat_m  +  delt_lon_m * delt_lon_m);
 
+/*    
+       sunVarGeom->stepsinangle = gridGeom->stepxy * sin(sunVarGeom->sunAzimuthAngle);
+       sunVarGeom->stepcosangle = gridGeom->stepxy * cos(sunVarGeom->sunAzimuthAngle);
+*/
 
-    if ((G_projection() != PROJECTION_LL)) {
-	if (pj_do_proj(&newLongitude, &newLatitude, &oproj, &iproj) < 0) {
-	    G_fatal_error("Error in pj_do_proj");
-	}
-    }
+    sunVarGeom->stepsinangle = gridGeom->stepxy * delt_lat_m / delt_dist;
+    sunVarGeom->stepcosangle = gridGeom->stepxy * delt_lon_m / delt_dist;
 
-    delt_east = newLongitude - gridGeom->xp;
-    delt_nor = newLatitude - gridGeom->yp;
-
-    delt_dist = sqrt(delt_east * delt_east + delt_nor * delt_nor);
-
-
-    sunVarGeom->stepsinangle = gridGeom->stepxy * delt_nor / delt_dist;
-    sunVarGeom->stepcosangle = gridGeom->stepxy * delt_east / delt_dist;
-
-    /*
-       sunVarGeom->stepsinangle = stepxy * sin(sunVarGeom->sunAzimuthAngle);
-       sunVarGeom->stepcosangle = stepxy * cos(sunVarGeom->sunAzimuthAngle);
-     */
     sunVarGeom->tanSolarAltitude = tan(sunVarGeom->solarAltitude);
 
     return;
_______________________________________________
grass-dev mailing list
[email protected]
http://lists.osgeo.org/mailman/listinfo/grass-dev

Reply via email to