Many texts (e.g. Hayashi (2002), Econometrics, Princeton University
Press, from page 644) give a fuller account of this test than would be
possible in a forum such as this. I would have several questions.  If
your series are oil prices should you have a trend in your unit root
tests.  The critical values for the residual based test of
cointegration are different from those for unit value tests.  If they
are oil prices it is possible that there is more than one
cointegration relationship and the Johansen procedure might be more
appropriate.

The economic theory on which your assumption of cointegration is based
is important in determining cointegration.

Best regards

John

On 27 July 2010 16:40, Farmer, Jesse <Jesse.Farmer(a)kochind.com> wrote:
> Hello:
>
> I am doing a test for cointegration across 5 time-series variables.  I've
> run the test but I am not sure how to interpret the output.  Could someone
> tell me if my data is exhibiting cointegration, and if so, how did you
> determine that?  I realize this is a n00b question, so apologies in advance.
>
> Thanks!
>
> My output below:
> -----------------
>
> Step 1: testing for a unit root in Var1
>
> Augmented Dickey-Fuller test for Var1
> including 5 lags of (1-L)api2
> sample size 517
> unit-root null hypothesis: a = 1
>
>    test with constant
>    model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
>    1st-order autocorrelation coeff. for e: 0.004
>    lagged differences: F(5, 510) = 7.952 [0.0000]
>    estimated value of (a - 1): -0.00320084
>    test statistic: tau_c(1) = -1.10968
>    asymptotic p-value 0.7144
>
> Step 2: testing for a unit root in Var2
>
> Augmented Dickey-Fuller test for Var2
> including 5 lags of (1-L)base
> sample size 517
> unit-root null hypothesis: a = 1
>
>    test with constant
>    model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
>    1st-order autocorrelation coeff. for e: 0.001
>    lagged differences: F(5, 510) = 2.011 [0.0756]
>    estimated value of (a - 1): -0.00202185
>    test statistic: tau_c(1) = -0.612473
>    asymptotic p-value 0.8656
>
> Step 3: testing for a unit root in Var3
>
> Augmented Dickey-Fuller test for Var3
> including 5 lags of (1-L)peak
> sample size 517
> unit-root null hypothesis: a = 1
>
>    test with constant
>    model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
>    1st-order autocorrelation coeff. for e: 0.002
>    lagged differences: F(5, 510) = 2.565 [0.0263]
>    estimated value of (a - 1): -0.0015613
>    test statistic: tau_c(1) = -0.535532
>    asymptotic p-value 0.8819
>
> Step 4: testing for a unit root in Var4
>
> Augmented Dickey-Fuller test for Var4
> including 5 lags of (1-L)nbp
> sample size 517
> unit-root null hypothesis: a = 1
>
>    test with constant
>    model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
>    1st-order autocorrelation coeff. for e: 0.001
>    lagged differences: F(5, 510) = 5.671 [0.0000]
>    estimated value of (a - 1): -0.0011618
>    test statistic: tau_c(1) = -0.431389
>    asymptotic p-value 0.9016
>
> Step 5: testing for a unit root in Var5
>
> Augmented Dickey-Fuller test for Var5
> including 5 lags of (1-L)brent
> sample size 517
> unit-root null hypothesis: a = 1
>
>    test with constant
>    model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
>    1st-order autocorrelation coeff. for e: 0.001
>    lagged differences: F(5, 510) = 1.759 [0.1196]
>    estimated value of (a - 1): -0.00386803
>    test statistic: tau_c(1) = -1.05127
>    asymptotic p-value 0.7369
>
> Step 6: cointegrating regression
>
> Cointegrating regression -
> OLS, using observations 2008/01/02-2010/01/01 (T = 523)
> Dependent variable: api2
>
>              coefficient   std. error   t-ratio    p-value
>   ---------------------------------------------------------
>   const      -35.8323      1.81277      -19.77    3.20e-065 ***
>   base         1.58498     0.321094       4.936   1.08e-06  ***
>   peak        -0.701765    0.225461      -3.113   0.0020    ***
>   nbp          0.848089    0.0617052     13.74    7.18e-037 ***
>   brent        0.686534    0.0279061     24.60    4.14e-089 ***
>
> Mean dependent var   109.5593   S.D. dependent var   35.61656
> Sum squared resid    16623.86   S.E. of regression   5.665015
> R-squared            0.974895   Adjusted R-squared   0.974701
> Log-likelihood      -1646.637   Akaike criterion     3303.274
> Schwarz criterion    3324.571   Hannan-Quinn         3311.615
> rho                  0.946380   Durbin-Watson        0.103074
>
> Step 7: testing for a unit root in uhat
>
> Augmented Dickey-Fuller test for uhat
> including 5 lags of (1-L)uhat
> sample size 517
> unit-root null hypothesis: a = 1
>
>    model: (1-L)y = b0 + (a-1)*y(-1) + ... + e
>    1st-order autocorrelation coeff. for e: -0.001
>    lagged differences: F(5, 511) = 3.361 [0.0054]
>    estimated value of (a - 1): -0.0533006
>    test statistic: tau_c(5) = -3.60562
>    asymptotic p-value 0.2762
>
> There is evidence for a cointegrating relationship if:
> (a) The unit-root hypothesis is not rejected for the individual variables.
> (b) The unit-root hypothesis is rejected for the residuals (uhat) from the
>     cointegrating regression.
>
> _______________________________________________
> Gretl-users mailing list
> Gretl-users(a)lists.wfu.edu
> http://lists.wfu.edu/mailman/listinfo/gretl-users
>



-- 
John C Frain
Economics Department
Trinity College Dublin
Dublin 2
Ireland
www.tcd.ie/Economics/staff/frainj/home.html
mailto:frainj(a)tcd.ie
mailto:frainj(a)gmail.com

Reply via email to