Dear all:

I make my question clearer. ARIMA and X-12-ARIMA have almost the same outcomes 
under most combinations of AR and MA. For example, Using the same sample, the 
output of ARIMA(1,1,1)(1,1,0 ):
 
Function evaluations: 22
Evaluations of gradient: 8
Model 5: ARIMA, using observations 1982:03-1989:12 (T = 94)
Estimated using BHHH method (conditional ML)
Dependent variable: (1-L)(1-Ls) z
 
             coefficient   std. error      z       p-value 
  ---------------------------------------------------------
  phi_1       0.0386387     0.490287     0.07881   0.9372  
  Phi_1      -0.547450      0.103980    -5.265     1.40e-07 ***
  theta_1     0.134454      0.505469     0.2660    0.7902  
Mean dependent var  -595.9894   S.D. dependent var   35113.05
Mean of innovations -657.4065   S.D. of innovations  29171.20
Log-likelihood      -1099.788   Akaike criterion     2207.577
Schwarz criterion    2217.750   Hannan-Quinn         2211.686
                        Real  Imaginary    Modulus  Frequency
  -----------------------------------------------------------
  AR
    Root  1          25.8808     0.0000    25.8808     0.0000
  AR (seasonal)
    Root  1          -1.8266     0.0000     1.8266     0.5000
  MA
    Root  1          -7.4375     0.0000     7.4375     0.5000
  -----------------------------------------------------------
 
the output of X-12-ARIMA(1,1,1)(1,1,0 ):
 
Model 6: ARIMA, using observations 1982:03-1989:12 (T = 94)
Estimated using X-12-ARIMA (conditional ML)
Dependent variable: (1-L)(1-Ls) z
             coefficient   std. error      z       p-value 
  ---------------------------------------------------------
  phi_1       0.0383739    0.602274      0.06371   0.9492  
  Phi_1      -0.547423     0.0911210    -6.008     1.88e-09 ***
  theta_1     0.134554     0.597619      0.2252    0.8219  
Mean dependent var  -595.9894   S.D. dependent var   35113.05
Mean of innovations -657.4774   S.D. of innovations  29171.20
Log-likelihood      -1099.788   Akaike criterion     2207.577
Schwarz criterion    2217.750   Hannan-Quinn         2211.686
                        Real  Imaginary    Modulus  Frequency
  -----------------------------------------------------------
  AR
    Root  1          26.0594     0.0000    26.0594     0.0000
  AR (seasonal)
    Root  1          -1.8267     0.0000     1.8267     0.5000
  MA
    Root  1          -7.4320     0.0000     7.4320     0.5000
  -----------------------------------------------------------
 
 
The outcomes of ARIMA(1,1,1)(1,1,0 ) and X-12-ARIMA(1,1,1)(1,1,0 ) are almost 
the same. 

But there are a few exceptions. For example, under the same sample, the output 
of ARIMA(1,1,2)(2,1,0 ):
 
Model 7: ARIMA, using observations 1983:03-1989:12 (T = 82)
Estimated using BHHH method (conditional ML)
Dependent variable: (1-L)(1-Ls) z
             coefficient   std. error     z      p-value 
  -------------------------------------------------------
  phi_1       -0.590308    0.200862     -2.939   0.0033   ***
  Phi_1       -0.683313    0.134247     -5.090   3.58e-07 ***
  Phi_2       -0.240713    0.113586     -2.119   0.0341   **
  theta_1      0.873512    0.207170      4.216   2.48e-05 ***
  theta_2      0.361254    0.0966288     3.739   0.0002   ***
Mean dependent var  -1074.305   S.D. dependent var   36698.54
Mean of innovations -1019.087   S.D. of innovations  28580.42
Log-likelihood      -957.7121   Akaike criterion     1927.424
Schwarz criterion    1941.864   Hannan-Quinn         1933.222
                        Real  Imaginary    Modulus  Frequency
  -----------------------------------------------------------
  AR
    Root  1          -1.6940     0.0000     1.6940     0.5000
  AR (seasonal)
    Root  1          -1.4194    -1.4628     2.0382    -0.3726
    Root  2          -1.4194     1.4628     2.0382     0.3726
  MA
    Root  1          -1.2090    -1.1430     1.6638    -0.3795
    Root  2          -1.2090     1.1430     1.6638     0.3795
  -----------------------------------------------------------
 
the output of X-12-ARIMA(1,1,2)(2,1,0 ):
 
Model 8: ARIMA, using observations 1983:03-1989:12 (T = 82)
Estimated using X-12-ARIMA (conditional ML)
Dependent variable: (1-L)(1-Ls) z
             coefficient   std. error     z      p-value 
  -------------------------------------------------------
  phi_1        0.653709     0.209156     3.125   0.0018   ***
  Phi_1       -0.675406     0.113095    -5.972   2.34e-09 ***
  Phi_2       -0.244173     0.113191    -2.157   0.0310   **
  theta_1     -0.566737     0.220105    -2.575   0.0100   **
  theta_2     -0.222901     0.115118    -1.936   0.0528   *
Mean dependent var  -1074.305   S.D. dependent var   36698.54
Mean of innovations -2724.431   S.D. of innovations  29295.00
Log-likelihood      -959.7371   Akaike criterion     1931.474
Schwarz criterion    1945.914   Hannan-Quinn         1937.272
                        Real  Imaginary    Modulus  Frequency
  -----------------------------------------------------------
  AR
    Root  1           1.5297     0.0000     1.5297     0.0000
  AR (seasonal)
    Root  1          -1.3830     1.4774     2.0237     0.3698
    Root  2          -1.3830    -1.4774     2.0237    -0.3698
  MA
    Root  1           1.1990     0.0000     1.1990     0.0000
    Root  2          -3.7416     0.0000     3.7416     0.5000
  -----------------------------------------------------------
 
 
The outcomes of ARIMA(1,1,2)(2,1,0 ) and X-12-ARIMA(1,1,2)(2,1,0 ) are hugely 
different.
The question above puzzles me.

I also want to know When I choose the options Model/Time series/ARIMA/Using 
X-12-ARIMA to run the X-12-ARIMA model. Is the set of equation of X-12-ARIMA in 
gretl the same as RegARIMA(X-12-ARIMA – Reference Manual, Version 0.3. U.S. 
Census Bureau):
φ(B)Φ(B)▽^d ▽_s^D[y-Σβ_i x_it]= θ(B)Θ(B)a_t
I can not see the outcome of any seasonality adjusting regression variables(the 
part of y-Σβ_i x_it, such as length-of-month、Trend constant、Trading day、level 
shift at t_0 and so on).
 
Thanks a lot                                      

Reply via email to