Many thanks, Most likely a small sample problem (the estimate from the first function leaves 18% of observations in first regime, while that of the second even less). However, maybe you should decide what is the preferred approach to estimate the threshold, so that results do not differ.
Many thanks though for the program and the reply. Best regards, Andreas P.S. The commands I use are (no other parameter is pre-set): bundle b_nfc_td_@vn = H_thresh_test(d_EA_nfc_td, l1, test_var, FALSE, 1000, 0.95, 0.15) b_nfc_td_@vn = H_thresh_estim(d_EA_nfc_td, l1, test_var, FALSE, 0.9, 0.7, 2) and the output is: Test of Null of No Threshold Against Alternative of Threshold Under Maintained Assumption of Homoskedastic Errors Number of Bootstrap Replications: 1000 Trimming percentage: 0.150000 Threshold Estimate: 0.160979 (18 % of obs in 1st regime) LM-test for no threshold: 25.684802 Bootstrap p-value: 0.009000 ******************************************* Threshold regression based on Hansen (2000) User choice: assume homoskedasticity ******************************************* Global OLS Estimation, Without Threshold Dependent Variable: d_EA_nfc_td OLS Standard Errors Reported coefficient std. error z p-value ------------------------------------------------------- Constant -0.00673135 0.00420391 -1.601 0.1093 d_DFR 0.483153 0.0314844 15.35 3.78e-53 *** d_DFR_1 0.303526 0.0317247 9.567 1.10e-21 *** d_DFR_2 0.166300 0.0316151 5.260 1.44e-07 *** d_DFR_3 -0.0447660 0.0312387 -1.433 0.1518 d_DFR_4 -0.0825148 0.0310742 -2.655 0.0079 *** Observations = 301 Degrees of Freedom = 295 Sum of Squared Errors = 1.56605 Residual Variance = 0.00530865 R-squared = 0.692068 Heterosked. test p-val = 0.000971344 ************************************************************* Threshold Estimation, dependent variable: d_EA_nfc_td Threshold Variable: test_var Threshold Estimate = 0.528682 90% CI: [0.528682, 0.528682] Sum of Sq. Errors = 1.18205 Residual Var. = 0.00409013 Joint R-squared = 0.768 Heterosked. test p-value: 0.000 ************************************************************* Regime 1: test_var <= 0.528682 (standard errors do not take into account threshold uncertainty) coefficient std. error z p-value -------------------------------------------------------- Constant -0.00301783 0.00374876 -0.8050 0.4208 d_DFR 0.434563 0.0285556 15.22 2.68e-52 *** d_DFR_1 0.329858 0.0284484 11.59 4.37e-31 *** d_DFR_2 0.173306 0.0281670 6.153 7.61e-10 *** d_DFR_3 -0.0265575 0.0281749 -0.9426 0.3459 d_DFR_4 -0.0782675 0.0283734 -2.758 0.0058 *** Observations = 292 Degrees of Freedom = 286 Sum of Squared Errors = 1.14915 Residual Variance = 0.00401801 R-squared = 0.74057 Regime 2: test_var > 0.528682 (standard errors do not take into account threshold uncertainty) coefficient std. error z p-value ------------------------------------------------------- Constant -0.138555 0.0277248 -4.998 5.81e-07 *** d_DFR 1.20773 0.142826 8.456 2.77e-17 *** d_DFR_1 -0.306680 0.156734 -1.957 0.0504 * d_DFR_2 0.443741 0.237662 1.867 0.0619 * d_DFR_3 -0.275100 0.169861 -1.620 0.1053 d_DFR_4 0.284360 0.123145 2.309 0.0209 ** Observations = 9 Degrees of Freedom = 3 Sum of Squared Errors = 0.0328959 Residual Variance = 0.0109653 R-squared = 0.934906 On Tuesday, April 8, 2025 at 04:49:22 PM GMT+2, Andreas Zervas <anzer...@yahoo.com> wrote: Hi all, especially Sven, I was playing with the package thres_infer, and it appears that the threshold estimates from functions H_thresh_test() and H_thresh_estim() differ. Is it intented? Should they be the same? In the particular example from the sample script, which I pasted below, the values are similar, but I run it with data that give totally different results. Any thought - suggestions? Best regards, Andreas gretl version 2024d Current session: 2025-04-08 16:37 # Sample script for thresh_infer Read datafile C:\Program Files\gretl\data\misc\denmark.gdt periodicity: 4, maxobs: 55 observations range: 1974:1 to 1987:3 Listing 5 variables: 0) const 1) LRM 2) LRY 3) IBO 4) IDE Test of Null of No Threshold Against Alternative of Threshold Under Maintained Assumption of Homoskedastic Errors Number of Bootstrap Replications: 1000 Trimming percentage: 0.150000 Threshold Estimate: 0.088000 (46 % of obs in 1st regime) LM-test for no threshold: 4.154898 Bootstrap p-value: 0.923000 ******************************************* Threshold regression based on Hansen (2000) User choice: assume homoskedasticity ******************************************* Global OLS Estimation, Without Threshold Dependent Variable: mg OLS Standard Errors Reported coefficient std. error z p-value ------------------------------------------------------- Constant 0.0705718 0.0272334 2.591 0.0096 *** IBO -0.469693 0.229408 -2.047 0.0406 ** IDE 0.110332 0.500081 0.2206 0.8254 Observations = 54 Degrees of Freedom = 51 Sum of Squared Errors = 0.0487311 Residual Variance = 0.000955512 R-squared = 0.162774 Heterosked. test p-val = 0.365732 ************************************************************* Threshold Estimation, dependent variable: mg Threshold Variable: IDE Threshold Estimate = 0.074 90% CI: [0.074, 0.11] Sum of Sq. Errors = 0.0435625 Residual Var. = 0.000907553 Joint R-squared = 0.252 Heterosked. test p-value: 0.225 ************************************************************* Regime 1: IDE <= 0.074000 (standard errors do not take into account threshold uncertainty) coefficient std. error z p-value ------------------------------------------------------- Constant -0.833454 0.386015 -2.159 0.0308 ** IBO -0.774593 0.915857 -0.8458 0.3977 IDE 13.4116 6.06844 2.210 0.0271 ** Observations = 5 Degrees of Freedom = 2 Sum of Squared Errors = 0.00612267 Residual Variance = 0.00306133 R-squared = 0.425631 Regime 2: IDE > 0.074000 (standard errors do not take into account threshold uncertainty) coefficient std. error z p-value ------------------------------------------------------- Constant 0.0727286 0.0303053 2.400 0.0164 ** IBO -0.487763 0.233237 -2.091 0.0365 ** IDE 0.116314 0.505722 0.2300 0.8181 Observations = 49 Degrees of Freedom = 46 Sum of Squared Errors = 0.0374399 Residual Variance = 0.000813911 R-squared = 0.178561
_______________________________________________ Gretl-users mailing list -- gretl-users@gretlml.univpm.it To unsubscribe send an email to gretl-users-le...@gretlml.univpm.it Website: https://gretlml.univpm.it/postorius/lists/gretl-users.gretlml.univpm.it/