Hi Ted,
> The values I chose for the constants in the expression were motivated
> by aiming for a reduction by 1/cuberoot(2) as one moves up one level
> of superscript, so that the point size of "z" in "$X sup V sup 2 sup
> z$" would be about half that of X: cuberoot(2) = 1.26, 14/11 = 1.27 --
> but only using small multipliers (since ".ps (u;\\n[.ps]*11+7/14>?5)"
> is set to work in "u", which for PS is points*1000, so 11-point is
> 11000u; and you could easily provoke overflow).
Is this a solution?
$ python -c 'print 2 ** (-1 / 3.0)'
0.793700525984
$
$ cat ted
.ps 12p
.tm \n[.ps]
.ps
(u;(\n[.ps]*7/10)+(\n[.ps]*9/100)+(\n[.ps]*3/1000)+(\n[.ps]*7/10000)>?5z)
.tm \n[.ps]
.ps
(u;(\n[.ps]*7/10)+(\n[.ps]*9/100)+(\n[.ps]*3/1000)+(\n[.ps]*7/10000)>?5z)
.tm \n[.ps]
.ps
(u;(\n[.ps]*7/10)+(\n[.ps]*9/100)+(\n[.ps]*3/1000)+(\n[.ps]*7/10000)>?5z)
.tm \n[.ps]
.ps
(u;(\n[.ps]*7/10)+(\n[.ps]*9/100)+(\n[.ps]*3/1000)+(\n[.ps]*7/10000)>?5z)
.tm \n[.ps]
.ps
(u;(\n[.ps]*7/10)+(\n[.ps]*9/100)+(\n[.ps]*3/1000)+(\n[.ps]*7/10000)>?5z)
.tm \n[.ps]
$
$ troff ted
12000
9524
7557
5996
5000
5000
$
Cheers, Ralph.