On 10.09.2010, at 23:58, Felipe Lessa wrote:
Hmmmm...
On Fri, Sep 10, 2010 at 6:47 PM, Jan Christiansen
<j...@informatik.uni-kiel.de> wrote:
instance Applicative Proj where
pure = Proj . const
Proj f <*> Proj x = Proj (\p -> f (False:p) (x (True:p)))
(pure f) <*> Proj x
=== Proj (const f) <*> Proj x
=== Proj (\p -> (const f) (False:p) (x (True:p)))
=== Proj (\p -> f (x (True:p)))
Proj f <*> (pure x)
=== Proj f <*> Proj (const x)
=== Proj (\p -> f (False:p) ((const x) (True:p)))
=== Proj (\p -> f (False:p) x))
instance Applicative Proj where
pure x = Pure x
Pure f <*> Pure x = Pure (f x)
Pure f <*> Proj x = Proj (\p -> f (x p))
Proj f <*> Pure x = Proj (\p -> f p x)
Proj f <*> Proj x = Proj (\p -> f (False:p) (x (True:p)))
(pure f) <*> Proj x
=== Pure f <*> Proj x
=== Proj (\p -> f (x p))
(Proj f) <*> (pure x)
=== Proj f <*> Pure x
=== Proj (\p -> f p x)
Was this difference intended?
Yes, this is intended. This difference is the reason why the former
instance does not satisfy the Applicative laws while the latter does.
The first instance provides every subterm of an idiomatic term with a
position. Even a "pure" term is provided with a position although it
does not use it. The latter instance does not provide a "pure" term
with a position as it does not need one. Therefore, the second
instance simply passes position p to a subterm if the other subterm is
pure. In the example for the first instance we can observe that we
unnecessarily extend the position with True and False respectively.
_______________________________________________
Haskell-Cafe mailing list
Haskell-Cafe@haskell.org
http://www.haskell.org/mailman/listinfo/haskell-cafe