
Basically, the objective of this project is to use some objects and also the algebra among them (fuctors, monads, functor algebras , monad algebras), originating from Category Theory, with the help of Haskell PL to create alternative solution strategies to the problems (failure detection, purity, avoiding side-effects, ...) existing in Computer Science, particularly, in the context of functional programming.

1. Category Theory - As a mathematical background
· Categories
· Functors
· Natural Transformations
· Monads
			
2. Haskell programming language
· Basic Classifications of programming languages
· What is Functional Programming
· What is Haskell
· Haskell's Type System (Static and Strong)
· Type Signature
· Type Variables
· Type Classes
· Creating new types in Haskell
· Definition of Haskell's HASK category (Types are Objects, Functions between objects are Morphisms)

3. Functors of Haskell
· From theory to coding (theory and its representation in Haskell)
· Proofs
· Maybe as a functor
· List as a functor
· State as a functor
· Continuation as a functor
· Either as a functor
· Reader as a functor
· Writer as a functor

4. Monads of Haskell
· From theory to coding (theory and its representation in Haskell)
· Proofs
· Maybe as a monad -- Failure Detection
· List as a monad -- Non Determinism
· State as a monad -- Providing Purity
· Continuation as a monad -- Providing Continuation
· Either as a monad -- Exception Detection
· Reader as a monad -- Dependency
· Writer as a monad -- Output
· IO as an impure monad with the help of State monad -- Avoiding Side Effects
· Examples of monadic programming to show the advantages of each.
· Monad Transformers of Haskell
· MaybeT
· ListT
· StateT
· Examples

5. Functor Algebras
· Theory
· F-Algebras
· Initial Algebras
· Catamorphisms
· Paramorphisms
· Haskell Representations (if possible)

6. Monad Algebras
· Theory
· T-Algebra
· Haskell Representations (if possible)

7. Conclusion

