jstack is a handy tool:
http://java.sun.com/j2se/1.5.0/docs/tooldocs/share/jstack.html

On Tue, May 11, 2010 at 9:50 AM, Sebastian Bauer <ad...@ugame.net.pl> wrote:

> Ram is not a problem, second region server using about 550mB and first
> about 300mB problem is with CPU, when i making queries to both column
> famielies second region server is using ablut 40% - 80% first about 10%,
> after turning off queries to AdvToUsers(this big) CPU on both servers are
> 2-7%.
>
> Sorry but i dont know how to make thread-dumping and i dont know java.
>
> W dniu 11.05.2010 18:40, Stack pisze:
>
>> You could try thread-dumping the regionserver to try and figure where
>> its hung up.  Counters are usually fast so maybe its something to do
>> w/ 8k of them in the one row.  What kinda numbers are you seeing?  How
>> much RAM you throwing at the problem?
>>
>> Yours,
>> St.Ack
>>
>>
>>
>> On Tue, May 11, 2010 at 8:51 AM, Sebastian Bauer<ad...@ugame.net.pl>
>>  wrote:
>>
>>
>>
>>> Hi,
>>>
>>> maybe i'll get help here :)
>>>
>>> I have 2 tables, UserToAdv and AdvToUsers.
>>>
>>> UserToAdv is simple:
>>> { "row_id" =>  [ {"adv:<id>":<counter>  },
>>>                            {"adv:<id>":<counter>  },
>>>                            .....about 100 columns
>>>                        ]
>>> only one kind of operation is perform - increasing counter:
>>> client.atomicIncrement("UsersToAdv", ID, column, 1)
>>>
>>>
>>> AdvToUsers have one column familie: "user:" inside this i have about 8000
>>> columns with format: "user:<cookie>"
>>> what i'm doing on DB is increasing counter inside "user:<cookie>":
>>>
>>> client.atomicIncrement("AdvToUsers", ID, column, 1)
>>>
>>> i have 2 regions:
>>>
>>>
>>> first one:
>>>        UsersToAdv,6FEC716B3960D1E8208DE6B06993A68D,1273580007602
>>>            stores=1, storefiles=1, storefileSizeMB=8, memstoreSizeMB=9,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,0FDD84B9124B98B05A5E40F47C12DC45,1273580531847
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        AdvToUsers,5735,1273580575873
>>>            stores=1, storefiles=1, storefileSizeMB=15, memstoreSizeMB=10,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,67CB411B48A7B83F0B863AC615285060,1273580533380
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,4012667F3E78C6431E3DD84641002FCE,1273580532995
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,5FE4A7506737CE0F38E254E62E23FE45,1273580533380
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,47E95EE30A11EBE45F055AC57EB2676E,1273580532995
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,37F9573415D9069B7E5810012AAD9CB7,1273580532258
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,1FFFDF082566D93153B34BFE0C44A9BF,1273580532173
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,17C93FB0047BC4D660C6570B734CBE17,1273580531847
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,27DFD8F02CD98FF57E8334837C73C57A,1273580532173
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>
>>> second one:
>>>        UsersToAdv,57C568066D35D09B4AF6CD7D68681144,1273580533427
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,4FA6A1A2681E2D252CCF765B140369EF,1273580533427
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        AdvToUsers,,1273580575966
>>>            stores=1, storefiles=1, storefileSizeMB=1, memstoreSizeMB=1,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,07B296AC590061025B382B163E3C149E,1273580533023
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,3015D5DB07E2F4D30A19DEB354A85B52,1273580532258
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        AdvToUsers,5859,1273580580940
>>>            stores=1, storefiles=1, storefileSizeMB=9, memstoreSizeMB=9,
>>> storefileIndexSizeMB=0
>>>        AdvToUsers,5315,1273580575966
>>>            stores=1, storefiles=1, storefileSizeMB=14, memstoreSizeMB=12,
>>> storefileIndexSizeMB=0
>>>        AdvToUsers,5825,1273580580940
>>>            stores=1, storefiles=1, storefileSizeMB=8, memstoreSizeMB=8,
>>> storefileIndexSizeMB=0
>>>        AdvToUsers,5671,1273580578114
>>>            stores=1, storefiles=1, storefileSizeMB=8, memstoreSizeMB=7,
>>> storefileIndexSizeMB=0
>>>        UsersToAdv,,1273580533023
>>>            stores=1, storefiles=1, storefileSizeMB=4, memstoreSizeMB=4,
>>> storefileIndexSizeMB=0
>>>        AdvToUsers,5457,1273580578114
>>>            stores=1, storefiles=1, storefileSizeMB=8, memstoreSizeMB=8,
>>> storefileIndexSizeMB=0
>>>
>>> number of queries on both tables are equal, but load is greater on second
>>> region because of AdvToUsers
>>>
>>> is there any solution to increase performance atomicIncrement operation
>>> on
>>> column families with so many(8000) columns?
>>>
>>> Thank You,
>>>
>>> Sebastian Bauer
>>>
>>>
>>>
>>
>>
>
>

Reply via email to