Misha Dmitriev created HDFS-12042: ------------------------------------- Summary: Reduce memory used by snapshot diff data structures Key: HDFS-12042 URL: https://issues.apache.org/jira/browse/HDFS-12042 Project: Hadoop HDFS Issue Type: Improvement Reporter: Misha Dmitriev Assignee: Misha Dmitriev
When snapshot diff operation is performed in a NameNode that manages several million HDFS files/directories, NN needs a lot of memory. Some of that memory is wasted due to suboptimal data structures, such as empty or under-populated ArrayLists, etc. Analyzing one heap dump with jxray (www.jxray.com), we observed the following problems with data structures: {code} 9. BAD COLLECTIONS Total collections: 99,707,902 Bad collections: 88,799,760 Overhead: 9,063,898K (18.2%) Top bad collections: Ovhd Problem Num objs Type ------------------------------------------------- 3,056,014K (6.1%) small 29435572 j.u.ArrayList 2,641,373K (5.3%) 1-elem 21837906 j.u.ArrayList 864,215K (1.7%) 1-elem 5291813 j.u.TreeSet 808,456K (1.6%) 1-elem 3045847 j.u.HashMap 602,470K (1.2%) empty 18549109 j.u.ArrayList 441,563K (0.9%) empty 4356975 j.u.TreeSet 373,088K (0.7%) empty 5297007 j.u.HashMap 270,324K (0.5%) small 931394 j.u.HashMap {code} The data structures created by HDFS code that suffer from the above problems are, in particular: {code} 4,228,182K (8.5%): j.u.ArrayList: 19412263 of small 2,111,087K (4.2%), 12932408 of 1-elem 1,717,585K (3.4%), 12784 310 of empty 399,509K (0.8%) <-- org.apache.hadoop.hdfs.server.namenode.snapshot.FileDiffList.diffs <-- org.apache.hadoop.hdfs.server.nameno de.snapshot.FileWithSnapshotFeature.diffs <-- org.apache.hadoop.hdfs.server.namenode.INode$Feature[] <-- org.apache. hadoop.hdfs.server.namenode.INodeFile.features <-- org.apache.hadoop.hdfs.server.blockmanagement.BlockInfo.bc <-- or g.apache.hadoop.util.LightWeightGSet$LinkedElement[] <-- org.apache.hadoop.hdfs.server.blockmanagement.BlocksMap$1.e ntries <-- org.apache.hadoop.hdfs.server.blockmanagement.BlocksMap.blocks <-- org.apache.hadoop.hdfs.server.blockman agement.BlocksMap$1.entries <-- org.apache.hadoop.hdfs.server.blockmanagement.BlocksMap.blocks <-- org.apache.hadoop .hdfs.server.blockmanagement.BlockManager.blocksMap <-- org.apache.hadoop.hdfs.server.blockmanagement.BlockManager$B lockReportProcessingThread.this$0 <-- j.l.Thread[] <-- j.l.ThreadGroup.threads <-- j.l.Thread.group <-- Java Static: org.apache.hadoop.fs.FileSystem$Statistics.STATS_DATA_CLEANER {code} and {code} 575,557K (1.2%): j.u.ArrayList: 4363271 of 1-elem 409,056K (0.8%), 2439001 of small 166,482K (0.3%) <-- org.apache.hadoop.hdfs.server.namenode.INodeDirectory.children <-- org.apache.hadoop.util.LightWeightGSet$LinkedElement[] <-- org.apache.hadoop.util.LightWeightGSet.entries <-- org.apache.hadoop.hdfs.server.namenode.INodeMap.map <-- org.apache.hadoop.hdfs.server.namenode.FSDirectory.inodeMap <-- org.apache.hadoop.hdfs.server.namenode.FSNamesystem.dir <-- org.apache.hadoop.hdfs.server.namenode.FSNamesystem$NameNodeResourceMonitor.this$0 <-- org.apache.hadoop.util.Daemon.target <-- org.apache.hadoop.hdfs.server.namenode.FSDirectory.inodeMap <-- org.apache.hadoop.hdfs.server.namenode.FSNamesystem.dir <-- org.apache.hadoop.hdfs.server.namenode.FSNamesystem$NameNodeResourceMonitor.this$0 <-- org.apache.hadoop.util.Daemon.target <-- j.l.Thread[] <-- j.l.ThreadGroup.threads <-- j.l.Thread.group <-- Java Static: org.apache.hadoop.fs.FileSystem$Statistics.STATS_DATA_CLEANER {code} There are several different reference chains that all lead to FileDiffList.diffs or INodeDirectory.children. The total percentage of memory wasted by these data structures in the analyzed dump is about 12%. By creating these lists lazily and/or with capacity that better matches their actual size, we should be able to reclaim a significant part of these 12%. -- This message was sent by Atlassian JIRA (v6.4.14#64029) --------------------------------------------------------------------- To unsubscribe, e-mail: hdfs-dev-unsubscr...@hadoop.apache.org For additional commands, e-mail: hdfs-dev-h...@hadoop.apache.org