Hi help-glpk team:

I'm doing a research about a consensus and a got a question:

I have as parameter a matrix  A of size mxn like this


     | y1  y2  y3
---- |------------------
x1  |  1   2   2
x2  |  1   2   1
x3  |  2   3   2
x4  |  3   2   3

where  every element in the matrix represent an label A=1 , B=2 and C=2

and when I resolve my model I get a vector solution Z of size mx1 like this:

    |  Z[i]
----|--------
x1 |   2
x2 |   1
x3 |   2
x4 |   3


where every point represent the minimum distance with respect cell  aij in
matrix A

my objective function is:
min sum{i in I, j in J } | aij - zi  |   (in my model, this objective
function was already linearized )



now suppose that I have an number r o matrices A e.g. A1, A2, A3 ... At
  and I get a solution z for every matrix like above.

then I need evaluate every solution z in every Matrix Ar , r = 1,...,t
 except the matrix where the solution came from. i.e.  now I have matrix A
and solution z and I don't need optimize only evaluate solutions found in
previous matrices


Can you help me with this issue?

Thanks in advance

Best regards


-- 

*RAFAEL TORRES ESCOBAR*
Alumno Maestría en Ingeniería de Sistemas
Facultad de Ingeniería Mecánica y Eléctrica
UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN.
México.

*http://pisis.fime.uanl.mx/students/rafael_torres.html*
*
**[email protected]*
*
***Programa de Posgrado en Ingeniería de Sistemas
F IME - U A N L
Cd. Universitaria
San Nicolás de los Garza, Nuevo León C.P. 66450
MÉXICO*
http://pisis.fime.uanl.mx/
http://pisis.fime.uanl.mx/coordenadas.html
[email protected]

*
*              *
*
*


*
*
* *


GBY
_______________________________________________
Help-glpk mailing list
[email protected]
https://lists.gnu.org/mailman/listinfo/help-glpk

Reply via email to