[ https://issues.apache.org/jira/browse/HIVE-1342?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel ]
Ted Xu updated HIVE-1342: ------------------------- Attachment: ppd_same_alias_2.patch Hi John, Thank you for reviewing the patch. I updated the patch to solve HIVE-1395. I dig into the code and find that the same alias in different subqueries can be ambiguous only if PPD is parsing CommonJoinOperator, so I just add some special case in PPD for CommonJoinOperator. As you mentioned above, adding namespace to RowResolver or OpParseContext can also fix it, but I think we better keep their implementation simple. > Predicate push down get error result when sub-queries have the same alias > name > ------------------------------------------------------------------------------- > > Key: HIVE-1342 > URL: https://issues.apache.org/jira/browse/HIVE-1342 > Project: Hadoop Hive > Issue Type: Bug > Components: Query Processor > Affects Versions: 0.6.0 > Reporter: Ted Xu > Assignee: Ted Xu > Priority: Critical > Fix For: 0.6.0 > > Attachments: cmd.hql, explain, ppd_same_alias_1.patch, > ppd_same_alias_2.patch > > > Query is over-optimized by PPD when sub-queries have the same alias name, see > the query: > ------------------------------- > create table if not exists dm_fact_buyer_prd_info_d ( > category_id string > ,gmv_trade_num int > ,user_id int > ) > PARTITIONED BY (ds int); > set hive.optimize.ppd=true; > set hive.map.aggr=true; > explain select category_id1,category_id2,assoc_idx > from ( > select > category_id1 > , category_id2 > , count(distinct user_id) as assoc_idx > from ( > select > t1.category_id as category_id1 > , t2.category_id as category_id2 > , t1.user_id > from ( > select category_id, user_id > from dm_fact_buyer_prd_info_d > group by category_id, user_id ) t1 > join ( > select category_id, user_id > from dm_fact_buyer_prd_info_d > group by category_id, user_id ) t2 on > t1.user_id=t2.user_id > ) t1 > group by category_id1, category_id2 ) t_o > where category_id1 <> category_id2 > and assoc_idx > 2; > ----------------------------- > The query above will fail when execute, throwing exception: "can not cast > UDFOpNotEqual(Text, IntWritable) to UDFOpNotEqual(Text, Text)". > I explained the query and the execute plan looks really wired ( only Stage-1, > see the highlighted predicate): > ------------------------------- > Stage: Stage-1 > Map Reduce > Alias -> Map Operator Tree: > t_o:t1:t1:dm_fact_buyer_prd_info_d > TableScan > alias: dm_fact_buyer_prd_info_d > Filter Operator > predicate: > expr: *(category_id <> user_id)* > type: boolean > Select Operator > expressions: > expr: category_id > type: string > expr: user_id > type: bigint > outputColumnNames: category_id, user_id > Group By Operator > keys: > expr: category_id > type: string > expr: user_id > type: bigint > mode: hash > outputColumnNames: _col0, _col1 > Reduce Output Operator > key expressions: > expr: _col0 > type: string > expr: _col1 > type: bigint > sort order: ++ > Map-reduce partition columns: > expr: _col0 > type: string > expr: _col1 > type: bigint > tag: -1 > Reduce Operator Tree: > Group By Operator > keys: > expr: KEY._col0 > type: string > expr: KEY._col1 > type: bigint > mode: mergepartial > outputColumnNames: _col0, _col1 > Select Operator > expressions: > expr: _col0 > type: string > expr: _col1 > type: bigint > outputColumnNames: _col0, _col1 > File Output Operator > compressed: true > GlobalTableId: 0 > table: > input format: > org.apache.hadoop.mapred.SequenceFileInputFormat > output format: > org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat > ---------------------------------- > If disabling predicate push down (set hive.optimize.ppd=true), the error is > gone; I tried disabling map side aggregate, the error is gone,too. > *Changing the alias of subquery 't1' (either the inner one or the join > result), the bug disappears, too.* -- This message is automatically generated by JIRA. - You can reply to this email to add a comment to the issue online.