Actually Hive-917 only help when the joining tables are bucketed. With hive-trunk (not sure about 0.5), there will not has OOM anymore in Hive's mapjoin, no matter how big you table is.
On 2/18/10 3:17 PM, "Edward Capriolo" <[email protected]> wrote: > 2010/2/18 Gang Luo <[email protected]>: >> some personal opinions here. >> >> the whole table resides in memory. It is stored in a hash table. So, the heap >> memory should be at least larger than the table size. >> >> Even you double your heap size. I think the job will possibly fail, for the >> hash table in Java is not a memory-efficient data structure (Of course, this >> really depend the number of records and the length of each record). I think >> Map Join could only handle very small table (100 mb or so). >> >> -Gang >> >> >> ----- 原始邮件 ---- >> 发件人: Edward Capriolo <[email protected]> >> 收件人: [email protected] >> 发送日期: 2010/2/18 (周四) 5:45:10 下午 >> 主 题: map join and OOM >> >> I have Hive 4.1-rc2. My query runs in Time taken: 312.956 seconds >> using the map/reduce join. I was interested in using mapjoin, I get >> an OOM error. >> >> hive> >> java.lang.OutOfMemoryError: GC overhead limit exceeded >> at >> org.apache.hadoop.hive.ql.util.jdbm.recman.RecordFile.getNewNode(RecordFile.j >> ava:369) >> >> My pageviews is 8GB and my client_ips is ~ 1GB >> <property> >> <name>mapred.child.java.opts</name> >> <value>-Xmx778m</value> >> </property> >> >> [ecapri...@nyhadoopdata10 ~]$ hive >> Hive history >> file=/tmp/ecapriolo/hive_job_log_ecapriolo_201002181717_253155276.txt >> hive> explain Select /*+ MAPJOIN( client_ips )*/clientip_id,client_ip, >> SUM(bytes_sent) as X from pageviews join client_ips on >> pageviews.clientip_id=client_ips.id where year=2010 AND month=02 and >> day=17 group by clientip_id,client_ip >>> ; >> OK >> ABSTRACT SYNTAX TREE: >> (TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF pageviews) (TOK_TABREF >> client_ips) (= (. (TOK_TABLE_OR_COL pageviews) clientip_id) (. >> (TOK_TABLE_OR_COL client_ips) id)))) (TOK_INSERT (TOK_DESTINATION >> (TOK_DIR TOK_TMP_FILE)) (TOK_SELECT (TOK_HINTLIST (TOK_HINT >> TOK_MAPJOIN (TOK_HINTARGLIST client_ips))) (TOK_SELEXPR >> (TOK_TABLE_OR_COL clientip_id)) (TOK_SELEXPR (TOK_TABLE_OR_COL >> client_ip)) (TOK_SELEXPR (TOK_FUNCTION SUM (TOK_TABLE_OR_COL >> bytes_sent)) X)) (TOK_WHERE (and (AND (= (TOK_TABLE_OR_COL year) 2010) >> (= (TOK_TABLE_OR_COL month) 02)) (= (TOK_TABLE_OR_COL day) 17))) >> (TOK_GROUPBY (TOK_TABLE_OR_COL clientip_id) (TOK_TABLE_OR_COL >> client_ip)))) >> >> STAGE DEPENDENCIES: >> Stage-1 is a root stage >> Stage-2 depends on stages: Stage-1 >> Stage-0 is a root stage >> >> STAGE PLANS: >> Stage: Stage-1 >> Map Reduce >> Alias -> Map Operator Tree: >> pageviews >> TableScan >> alias: pageviews >> Filter Operator >> predicate: >> expr: (((UDFToDouble(year) = UDFToDouble(2010)) and >> (UDFToDouble(month) = UDFToDouble(2))) and (UDFToDouble(day) = >> UDFToDouble(17))) >> type: boolean >> Common Join Operator >> condition map: >> Inner Join 0 to 1 >> condition expressions: >> 0 {clientip_id} {bytes_sent} {year} {month} {day} >> 1 {client_ip} >> keys: >> 0 >> 1 >> outputColumnNames: _col13, _col17, _col22, _col23, >> _col24, _col26 >> Position of Big Table: 0 >> File Output Operator >> compressed: false >> GlobalTableId: 0 >> table: >> input format: >> org.apache.hadoop.mapred.SequenceFileInputFormat >> output format: >> org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat >> Local Work: >> Map Reduce Local Work >> Alias -> Map Local Tables: >> client_ips >> Fetch Operator >> limit: -1 >> Alias -> Map Local Operator Tree: >> client_ips >> TableScan >> alias: client_ips >> Common Join Operator >> condition map: >> Inner Join 0 to 1 >> condition expressions: >> 0 {clientip_id} {bytes_sent} {year} {month} {day} >> 1 {client_ip} >> keys: >> 0 >> 1 >> outputColumnNames: _col13, _col17, _col22, _col23, >> _col24, _col26 >> Position of Big Table: 0 >> File Output Operator >> compressed: false >> GlobalTableId: 0 >> table: >> input format: >> org.apache.hadoop.mapred.SequenceFileInputFormat >> output format: >> org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat >> >> Stage: Stage-2 >> Map Reduce >> Alias -> Map Operator Tree: >> >> hdfs://nyhadoopname1.ops.about.com:8020/tmp/hive-ecapriolo/975920219/10002 >> Select Operator >> expressions: >> expr: _col13 >> type: int >> expr: _col17 >> type: int >> expr: _col22 >> type: string >> expr: _col23 >> type: string >> expr: _col24 >> type: string >> expr: _col26 >> type: string >> outputColumnNames: _col13, _col17, _col22, _col23, _col24, _col26 >> Filter Operator >> predicate: >> expr: (((UDFToDouble(_col22) = UDFToDouble(2010)) >> and (UDFToDouble(_col23) = UDFToDouble(2))) and (UDFToDouble(_col24) = >> UDFToDouble(17))) >> type: boolean >> Select Operator >> expressions: >> expr: _col13 >> type: int >> expr: _col26 >> type: string >> expr: _col17 >> type: int >> outputColumnNames: _col13, _col26, _col17 >> Group By Operator >> aggregations: >> expr: sum(_col17) >> keys: >> expr: _col13 >> type: int >> expr: _col26 >> type: string >> mode: hash >> outputColumnNames: _col0, _col1, _col2 >> Reduce Output Operator >> key expressions: >> expr: _col0 >> type: int >> expr: _col1 >> type: string >> sort order: ++ >> Map-reduce partition columns: >> expr: _col0 >> type: int >> expr: _col1 >> type: string >> tag: -1 >> value expressions: >> expr: _col2 >> type: bigint >> Reduce Operator Tree: >> Group By Operator >> aggregations: >> expr: sum(VALUE._col0) >> keys: >> expr: KEY._col0 >> type: int >> expr: KEY._col1 >> type: string >> mode: mergepartial >> outputColumnNames: _col0, _col1, _col2 >> Select Operator >> expressions: >> expr: _col0 >> type: int >> expr: _col1 >> type: string >> expr: _col2 >> type: bigint >> outputColumnNames: _col0, _col1, _col2 >> File Output Operator >> compressed: false >> GlobalTableId: 0 >> table: >> input format: org.apache.hadoop.mapred.TextInputFormat >> output format: >> org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat >> >> Stage: Stage-0 >> Fetch Operator >> limit: -1 >> >> >> Time taken: 4.511 seconds >> >> Q: is the 1GB client_ip table too large for a mapjoin? >> Memory <value>-Xmx778m</value>. I could go higher. Not sure if i want >> to may have a cascading affect. >> Q: is the table in mapjoin all in main memory? Or is this like a small >> database on each mapper? >> >> Any other hints? Thank you. >> >> >> >> ___________________________________________________________ >> 好玩贺卡等你发,邮箱贺卡全新上线! >> http://card.mail.cn.yahoo.com/ >> > > Understood. map/join is not possible here. Really 300s is a fine time > for my query. > > HIVE-917 wont work I do not think. This is a star schema, the bigtable > needs to be joined with multiple tables so we can not chose one bucket > that would work for all. > > Has anyone ever considered doing the map-join with derby? This way > mapjoin is not a main memory operation. > >
