Note quite sure how you got to 48 lines. I think only a single call to SRW_TAC 
(or lcsymtacs.lrw) is needed.

val thm = Q.prove(
   `TAKE (LENGTH bvs + 1)
     (REVERSE bvs ++
      h::
          (blvs ++ [benv; x] ++ REVERSE args0 ++ [cl0] ++ st)) ++
   DROP (LENGTH args0 + (LENGTH blvs + (LENGTH bvs + 4)))
     (REVERSE bvs ++
      h::
          (blvs ++ [benv; x] ++ REVERSE args0 ++ [cl0] ++ st)) =
   TAKE (LENGTH bvs + 1)
     (REVERSE bvs ++
      h::
          (blvs ++ [benv; x] ++ REVERSE args0 ++ [cl0] ++ st)) ++ st`,
   lrw [listTheory.LIST_EQ_REWRITE, rich_listTheory.EL_DROP,
        rich_listTheory.EL_APPEND2, rich_listTheory.EL_CONS,
        arithmeticTheory.PRE_SUB1]
   )

Anthony

On 27 Feb 2013, at 17:58, Ramana Kumar <[email protected]> wrote:

> I just wrote a fairly manual 48-line proof of the following.
> Is there some decision procedure, simpset, or tactic I could use to automate 
> it that I'm not aware of?
> The theorems in srw_ss() seem not to play very well together on this kind of 
> stuff.
> 
> TAKE (LENGTH bvs + 1)
>   (REVERSE bvs ++
>    Block 3 [CodePtr a; bve]::
>        (blvs ++ [benv; CodePtr ret] ++ REVERSE args0 ++ [cl0] ++ st)) ++
> DROP (LENGTH args0 + (LENGTH blvs + (LENGTH bvs + 4)))
>   (REVERSE bvs ++
>    Block 3 [CodePtr a; bve]::
>        (blvs ++ [benv; CodePtr ret] ++ REVERSE args0 ++ [cl0] ++ st)) =
> TAKE (LENGTH bvs + 1)
>   (REVERSE bvs ++
>    Block 3 [CodePtr a; bve]::
>        (blvs ++ [benv; CodePtr ret] ++ REVERSE args0 ++ [cl0] ++ st)) ++
> st
> 
> ------------------------------------------------------------------------------
> Everyone hates slow websites. So do we.
> Make your web apps faster with AppDynamics
> Download AppDynamics Lite for free today:
> http://p.sf.net/sfu/appdyn_d2d_feb_______________________________________________
> hol-info mailing list
> [email protected]
> https://lists.sourceforge.net/lists/listinfo/hol-info


------------------------------------------------------------------------------
Everyone hates slow websites. So do we.
Make your web apps faster with AppDynamics
Download AppDynamics Lite for free today:
http://p.sf.net/sfu/appdyn_d2d_feb
_______________________________________________
hol-info mailing list
[email protected]
https://lists.sourceforge.net/lists/listinfo/hol-info

Reply via email to