Hi,

in prim_recTheory, there’s a definition of ``wellfounded``:

[wellfounded_def]  Definition

      ⊢ ∀R. wellfounded R ⇔ ¬∃f. ∀n. R (f (SUC n)) (f n)

In relationTheory, there’s a definition of ``WF``:

[WF_DEF]  Definition

      ⊢ ∀R. WF R ⇔ ∀B. (∃w. B w) ⇒ ∃min. B min ∧ ∀b. R b min ⇒ ¬B b

are they essentially the same thing? (and if so, how to prove?)

—Chun

Attachment: signature.asc
Description: Message signed with OpenPGP using GPGMail

_______________________________________________
hol-info mailing list
hol-info@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/hol-info

Reply via email to