Hmmm… I just found NUMINF_2D in seqTheory: (actually it’s me who moved this 
theorem from util_probTheory here)

[SUMINF_2D]  Theorem

      ⊢ ∀f g h.
            (∀m n. 0 ≤ f m n) ∧ (∀n. f n sums g n) ∧ summable g ∧
            BIJ h 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒
            UNCURRY f ∘ h sums suminf g

sorry for disturbing…

—Chun

> Il giorno 04 ott 2018, alle ore 20:41, Chun Tian (binghe) 
> <binghe.l...@gmail.com> ha scritto:
> 
> Hi,
> 
> suppose I have a function (f :num -> num -> real), and I want to calculate 
> the sum of (f i j) on the entire plane, one way is to use double suminf: 
> (assuming it is always summable, i.e. any sum is finite)
> 
>  suminf (λi. suminf (λj. f i j)))                                     (1)
> 
> However, there’s another way using single suminf, based on numpairTheory:
> 
>  suminf (λn. f (nfst n) (nsnd n))                             (2)
> 
> My question is: how can I prove (1) and (2) are equal, i.e.:
> 
>  suminf (λi. suminf (λj. f i j))) = suminf (λn. f (nfst n) (nsnd n))
> 
> ?
> 
> --Chun
> 

Attachment: signature.asc
Description: Message signed with OpenPGP using GPGMail

_______________________________________________
hol-info mailing list
hol-info@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/hol-info

Reply via email to