Hmmm… I just found NUMINF_2D in seqTheory: (actually it’s me who moved this theorem from util_probTheory here)
[SUMINF_2D] Theorem ⊢ ∀f g h. (∀m n. 0 ≤ f m n) ∧ (∀n. f n sums g n) ∧ summable g ∧ BIJ h 𝕌(:num) (𝕌(:num) × 𝕌(:num)) ⇒ UNCURRY f ∘ h sums suminf g sorry for disturbing… —Chun > Il giorno 04 ott 2018, alle ore 20:41, Chun Tian (binghe) > <binghe.l...@gmail.com> ha scritto: > > Hi, > > suppose I have a function (f :num -> num -> real), and I want to calculate > the sum of (f i j) on the entire plane, one way is to use double suminf: > (assuming it is always summable, i.e. any sum is finite) > > suminf (λi. suminf (λj. f i j))) (1) > > However, there’s another way using single suminf, based on numpairTheory: > > suminf (λn. f (nfst n) (nsnd n)) (2) > > My question is: how can I prove (1) and (2) are equal, i.e.: > > suminf (λi. suminf (λj. f i j))) = suminf (λn. f (nfst n) (nsnd n)) > > ? > > --Chun >
signature.asc
Description: Message signed with OpenPGP using GPGMail
_______________________________________________ hol-info mailing list hol-info@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/hol-info