Hi, I'm blocked at the following (strange) situation:
I have an infinite set of integers (num) in which each integer n satisfies a property P(n): ∃N. INFINITE N ∧ ∀n. n ∈ N ⇒ P n Suppose above proposition is NOT true, how can I derive that, there must exist a number m such that for all n >= m, P(n) does NOT hold? i.e. ?m. !n. m <= n ==> ~(P n) Thanks in advance, Chun Tian
signature.asc
Description: OpenPGP digital signature
_______________________________________________ hol-info mailing list hol-info@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/hol-info