Hi, I'm sorry, there was obviously a mistake in my codes. These codes would be the ones I used:
# Test: small network - undirceted_unwweighted_connected - FASTGREEDY adjacency_undirected_unweighted_connected<-read.table("test_smaller_nw_adjacency_undirected_unweighted_connected.txt") adjacency_matrix_undirected_unweighted_connected<-as.matrix(read.table("test_smaller_nw_adjacency_undirected_unweighted_connected.txt")) g_adjacency_undirected_weighted_connected <- graph.adjacency(adjacency_matrix_undirected_unweighted_connected) fg_undirected_unweighted_connected<-fastgreedy.community(g_adjacency_undirected_weighted_connected) fg_undirected_unweighted_connected membership(fg_undirected_unweighted_connected) sizes(fg_undirected_unweighted_connected) Regards, Stefanie From: stefanie_...@hotmail.com To: igraph-help@nongnu.org Subject: RE: [igraph] Fastgreedy Algorithm for Community Detection in igraph for RStudio - fatal error. Date: Wed, 28 Nov 2012 14:09:43 +0100 Hi, thanks a lot! I send you the small network as well as the codes I used in the attachement. Remark: I changed the fact that it's an undirected graph, manually in R: Direction - from TRUE to FALSE. Regards, Stefanie > From: nta...@gmail.com > Date: Wed, 28 Nov 2012 11:44:39 +0100 > To: igraph-help@nongnu.org > Subject: Re: [igraph] Fastgreedy Algorithm for Community Detection in igraph > for RStudio - fatal error. > > Hi, > > > Is it possible, that I have a newer version of igraph or RStudio, which is > > not compatible with the fastgreedy alg.? What can I do? > I strongly suspect that the problem lies in RStudio itself because all the > community detection algorithms work perfectly fine for me if I use them from > the command line version of R. But just to make sure, please send me the > small network that you managed to crash RStudio with and I'll check on my > machine. > > > Then I have a second question: I’m also using the Optimal Modularity > > Algorithm. But it needs a lot of time to compute (I started it 24 hours ago > > and it’s still computing). Is there a possibility to make it faster? > No, the optimal modularity algorithm is pretty much unusable for larger > graphs (more than 40-50 nodes I guess). This is because it uses integer > programming in the background and solving a general integer programming > problem has exponential time complexity. On the other hand, if the algorithm > finishes, it will give you the global optimum (unlike other community > detection algorithms which usually do not have any performance guarantees). > > -- > T. > _______________________________________________ > igraph-help mailing list > igraph-help@nongnu.org > https://lists.nongnu.org/mailman/listinfo/igraph-help
1 3 6 10 11 12 13 15 16 18 19 1 NA NA NA NA NA NA NA NA NA NA NA 3 NA NA NA NA NA NA NA NA NA NA NA 6 NA NA NA 1 1 NA 1 1 NA NA 1 10 NA NA 1 NA 1 NA 1 1 NA NA NA 11 NA NA 1 1 NA NA 1 NA NA NA NA 12 NA NA NA NA NA NA NA NA NA NA NA 13 NA NA 1 1 1 NA NA 1 NA 1 NA 15 NA NA 1 1 NA NA 1 NA NA NA NA 16 NA NA NA NA NA NA NA NA NA NA NA 18 NA NA NA NA NA NA 1 NA NA NA NA 19 NA NA 1 NA NA NA NA NA NA NA NA
test_smaller_nw_adjacency_undirected_unweighted_connected.xlsx
Description: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
# Test: small network - undirceted_unwweighted_connected adjacency_undirected_unweighted_connected<-read.table("test_smaller_nw_adjacency_undirected_unweighted_connected.txt") adjacency_matrix_undirected_unweighted_connected<-as.matrix(read.table("test_smaller_nw_adjacency_undirected_unweighted_connected.txt")) g_adjacency_undirected_weighted_connected <- graph.adjacency(adjacency_matrix_undirected_unweighted_connected) fg_undirected_unweighted_connected<-fastgreedy.community(g_adjacency_undirected_weighted_connected) g_adjacency_undirected_weighted_connected membership(g_adjacency_undirected_weighted_connected) sizes(g_adjacency_undirected_weighted_connected)
_______________________________________________ igraph-help mailing list igraph-help@nongnu.org https://lists.nongnu.org/mailman/listinfo/igraph-help