Hello everyone,

I am looking at the various methods available in igraph to *uniformly*
sample random graphs with a given degree sequence.  The obvious candidate
function is  igraph_degree_sequence_game().


This function provides three generation methods:

"SIMPLE" is explained, and it's clear that the sampling is not uniform.
Also, this method allows multigraphs and self-loops.

"SIMPLE_NO_MULTIPLE" is explicitly mentioned as not uniform.

What remains is the Viger-Latapy method. The link here is broken, but it's
easy to google up the original paper, https://arxiv.org/pdf/cs/0502085.pdf,
the abstract of which says:

"We address here the problem of generating random graphs uniformly from the
set of simple connected graphs having a prescribed degree sequence."

While I didn't read the entire paper, the abstract suggests that this
method should sample uniformly from the set of *connected* simple graphs.
However, this does not appear to be the case in a simple test.

Consider the degree sequence (1, 2, 1, 2).  The only two simple graphs with
this degree sequence are:

But the Viger-Latapy method, as implemented in igraph, will generate only
the second one.

Let's look at a more complicated example, the sequence (1, 2, 2, 2, 1).
Here's the list of such graphs (one of which is not connected):

The Viger-Latapy method generates only these:

Within this set, the sampling is indeed uniform, but there are three
connected graphs which are never generated.


Is the Viger-Latapy method known to be flawed, or is there something I'm
missing here?  There doesn't seem to be a peer-reviewed publication about


*P.S. *A method that does work in practice is generating a single
realization of the degree sequence, then using igraph_rewire() on it. What
is unclear in such situations is how many rewiring steps are necessary to
approximate uniform sampling.
igraph-help mailing list

Reply via email to