feihu_roger ha scritto:
I had a file f.jpg. It can be corrent show by acdsee or IrfanView, but
can not open it by IE.

f=Image.open('f.jpg')
f.show()

The new pic is color error, please see screen_snape.jpg .

f.jpg can be get from : 
http://farm1.static.flickr.com/174/462386397_579d1f4915_o.jpg
(IE only see red cross)

screen_snape.jpg gan be get 
from:http://farm1.static.flickr.com/216/462386405_d24140a4b9_o.jpg

Your images are JPEG using CMYK colorspace (normally JPEG use RGB colorspace). It is a format that many image viewer cannot handle (in fact IE and Firefox cannot shows them) but still used in some graphics context. It's known that PIL has some problems treating JPEG CMYK, as reported at least in these thread started from me:
http://mail.python.org/pipermail/image-sig/2006-April/003862.html
http://mail.python.org/pipermail/image-sig/2007-February/004336.html
Sorry but in the meantime the web space i've used in these thread to post some sample images and some text note, is not available to me anymore, so the links are broken.

However, in the first thread Kevin Cazabon has posted a patch that resolved the problem with all my images and that was accepted by PIL developers. The problem is that the patch applied is not the same as proposed by Kevin and the upstream version still shows problems on some images.

If you want to try, some month ago i've verified that Kevin's patch still applies correctly to 1.1.6. You can rename your "JpegImagePlugin.py" to something else and substituting it with attached one (remove "KevinPatch").

Good luck.   ;-)

Cesare.

#
# The Python Imaging Library.
# $Id: JpegImagePlugin.py 2199 2004-12-18 08:49:05Z fredrik $
#
# JPEG (JFIF) file handling
#
# See "Digital Compression and Coding of Continous-Tone Still Images,
# Part 1, Requirements and Guidelines" (CCITT T.81 / ISO 10918-1)
#
# History:
# 1995-09-09 fl   Created
# 1995-09-13 fl   Added full parser
# 1996-03-25 fl   Added hack to use the IJG command line utilities
# 1996-05-05 fl   Workaround Photoshop 2.5 CMYK polarity bug
# 1996-05-28 fl   Added draft support, JFIF version (0.1)
# 1996-12-30 fl   Added encoder options, added progression property (0.2)
# 1997-08-27 fl   Save mode 1 images as BW (0.3)
# 1998-07-12 fl   Added YCbCr to draft and save methods (0.4)
# 1998-10-19 fl   Don't hang on files using 16-bit DQT's (0.4.1)
# 2001-04-16 fl   Extract DPI settings from JFIF files (0.4.2)
# 2002-07-01 fl   Skip pad bytes before markers; identify Exif files (0.4.3)
# 2003-04-25 fl   Added experimental EXIF decoder (0.5)
# 2003-06-06 fl   Added experimental EXIF GPSinfo decoder
# 2003-09-13 fl   Extract COM markers
#
# Copyright (c) 1997-2003 by Secret Labs AB.
# Copyright (c) 1995-1996 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#

__version__ = "0.5"

import array, string
import Image, ImageFile, ImageChops

def i16(c,o=0):
    return ord(c[o+1]) + (ord(c[o])<<8)

def i32(c,o=0):
    return ord(c[o+3]) + (ord(c[o+2])<<8) + (ord(c[o+1])<<16) + (ord(c[o])<<24)

#
# Parser

def Skip(self, marker):
    n = i16(self.fp.read(2))-2
    ImageFile._safe_read(self.fp, n)

def APP(self, marker):
    #
    # Application marker.  Store these in the APP dictionary.
    # Also look for well-known application markers.

    n = i16(self.fp.read(2))-2
    s = ImageFile._safe_read(self.fp, n)

    app = "APP%d" % (marker&15)

    self.app[app] = s # compatibility
    self.applist.append((app, s))

    if marker == 0xFFE0 and s[:4] == "JFIF":
        # extract JFIF information
        self.info["jfif"] = version = i16(s, 5) # version
        self.info["jfif_version"] = divmod(version, 256)
        # extract JFIF properties
        try:
            jfif_unit = ord(s[7])
            jfif_density = i16(s, 8), i16(s, 10)
        except:
            pass
        else:
            if jfif_unit == 1:
                self.info["dpi"] = jfif_density
            self.info["jfif_unit"] = jfif_unit
            self.info["jfif_density"] = jfif_density
    elif marker == 0xFFE1 and s[:5] == "Exif\0":
        # extract Exif information (incomplete)
        self.info["exif"] = s # FIXME: value will change
    elif marker == 0xFFE2 and s[:5] == "FPXR\0":
        # extract FlashPix information (incomplete)
        self.info["flashpix"] = s # FIXME: value will change
    elif marker == 0xFFEE and s[:5] == "Adobe":
        self.info["adobe"] = i16(s, 5)
        # extract Adobe custom properties
        try:
            adobe_transform = ord(s[1])
        except:
            pass
        else:
            self.info["adobe_transform"] = adobe_transform

def COM(self, marker):
    #
    # Comment marker.  Store these in the APP dictionary.

    n = i16(self.fp.read(2))-2
    s = ImageFile._safe_read(self.fp, n)

    self.app["COM"] = s # compatibility
    self.applist.append(("COM", s))

def SOF(self, marker):
    #
    # Start of frame marker.  Defines the size and mode of the
    # image.  JPEG is colour blind, so we use some simple
    # heuristics to map the number of layers to an appropriate
    # mode.  Note that this could be made a bit brighter, by
    # looking for JFIF and Adobe APP markers.

    n = i16(self.fp.read(2))-2
    s = ImageFile._safe_read(self.fp, n)
    self.size = i16(s[3:]), i16(s[1:])

    self.bits = ord(s[0])
    if self.bits != 8:
        raise SyntaxError("cannot handle %d-bit layers" % self.bits)

    self.layers = ord(s[5])
    if self.layers == 1:
        self.mode = "L"
    elif self.layers == 3:
        self.mode = "RGB"
    elif self.layers == 4:
        self.mode = "CMYK"
    else:
        raise SyntaxError("cannot handle %d-layer images" % self.layers)

    if marker in [0xFFC2, 0xFFC6, 0xFFCA, 0xFFCE]:
        self.info["progression"] = 1

    for i in range(6, len(s), 3):
        t = s[i:i+3]
        # 4-tuples: id, vsamp, hsamp, qtable
        self.layer.append((t[0], ord(t[1])/16, ord(t[1])&15, ord(t[2])))

def DQT(self, marker):
    #
    # Define quantization table.  Support baseline 8-bit tables
    # only.  Note that there might be more than one table in
    # each marker.

    # FIXME: The quantization tables can be used to estimate the
    # compression quality.

    n = i16(self.fp.read(2))-2
    s = ImageFile._safe_read(self.fp, n)
    while len(s):
        if len(s) < 65:
            raise SyntaxError("bad quantization table marker")
        v = ord(s[0])
        if v/16 == 0:
            self.quantization[v&15] = array.array("b", s[1:65])
            s = s[65:]
        else:
            return # FIXME: add code to read 16-bit tables!
            # raise SyntaxError, "bad quantization table element size"


#
# JPEG marker table

MARKER = {
    0xFFC0: ("SOF0", "Baseline DCT", SOF),
    0xFFC1: ("SOF1", "Extended Sequential DCT", SOF),
    0xFFC2: ("SOF2", "Progressive DCT", SOF),
    0xFFC3: ("SOF3", "Spatial lossless", SOF),
    0xFFC4: ("DHT", "Define Huffman table", Skip),
    0xFFC5: ("SOF5", "Differential sequential DCT", SOF),
    0xFFC6: ("SOF6", "Differential progressive DCT", SOF),
    0xFFC7: ("SOF7", "Differential spatial", SOF),
    0xFFC8: ("JPG", "Extension", None),
    0xFFC9: ("SOF9", "Extended sequential DCT (AC)", SOF),
    0xFFCA: ("SOF10", "Progressive DCT (AC)", SOF),
    0xFFCB: ("SOF11", "Spatial lossless DCT (AC)", SOF),
    0xFFCC: ("DAC", "Define arithmetic coding conditioning", Skip),
    0xFFCD: ("SOF13", "Differential sequential DCT (AC)", SOF),
    0xFFCE: ("SOF14", "Differential progressive DCT (AC)", SOF),
    0xFFCF: ("SOF15", "Differential spatial (AC)", SOF),
    0xFFD0: ("RST0", "Restart 0", None),
    0xFFD1: ("RST1", "Restart 1", None),
    0xFFD2: ("RST2", "Restart 2", None),
    0xFFD3: ("RST3", "Restart 3", None),
    0xFFD4: ("RST4", "Restart 4", None),
    0xFFD5: ("RST5", "Restart 5", None),
    0xFFD6: ("RST6", "Restart 6", None),
    0xFFD7: ("RST7", "Restart 7", None),
    0xFFD8: ("SOI", "Start of image", None),
    0xFFD9: ("EOI", "End of image", None),
    0xFFDA: ("SOS", "Start of scan", Skip),
    0xFFDB: ("DQT", "Define quantization table", DQT),
    0xFFDC: ("DNL", "Define number of lines", Skip),
    0xFFDD: ("DRI", "Define restart interval", Skip),
    0xFFDE: ("DHP", "Define hierarchical progression", SOF),
    0xFFDF: ("EXP", "Expand reference component", Skip),
    0xFFE0: ("APP0", "Application segment 0", APP),
    0xFFE1: ("APP1", "Application segment 1", APP),
    0xFFE2: ("APP2", "Application segment 2", APP),
    0xFFE3: ("APP3", "Application segment 3", APP),
    0xFFE4: ("APP4", "Application segment 4", APP),
    0xFFE5: ("APP5", "Application segment 5", APP),
    0xFFE6: ("APP6", "Application segment 6", APP),
    0xFFE7: ("APP7", "Application segment 7", APP),
    0xFFE8: ("APP8", "Application segment 8", APP),
    0xFFE9: ("APP9", "Application segment 9", APP),
    0xFFEA: ("APP10", "Application segment 10", APP),
    0xFFEB: ("APP11", "Application segment 11", APP),
    0xFFEC: ("APP12", "Application segment 12", APP),
    0xFFED: ("APP13", "Application segment 13", APP),
    0xFFEE: ("APP14", "Application segment 14", APP),
    0xFFEF: ("APP15", "Application segment 15", APP),
    0xFFF0: ("JPG0", "Extension 0", None),
    0xFFF1: ("JPG1", "Extension 1", None),
    0xFFF2: ("JPG2", "Extension 2", None),
    0xFFF3: ("JPG3", "Extension 3", None),
    0xFFF4: ("JPG4", "Extension 4", None),
    0xFFF5: ("JPG5", "Extension 5", None),
    0xFFF6: ("JPG6", "Extension 6", None),
    0xFFF7: ("JPG7", "Extension 7", None),
    0xFFF8: ("JPG8", "Extension 8", None),
    0xFFF9: ("JPG9", "Extension 9", None),
    0xFFFA: ("JPG10", "Extension 10", None),
    0xFFFB: ("JPG11", "Extension 11", None),
    0xFFFC: ("JPG12", "Extension 12", None),
    0xFFFD: ("JPG13", "Extension 13", None),
    0xFFFE: ("COM", "Comment", COM)
}


def _accept(prefix):
    return prefix[0] == "\377"

##
# Image plugin for JPEG and JFIF images.

class JpegImageFile(ImageFile.ImageFile):

    format = "JPEG"
    format_description = "JPEG (ISO 10918)"

    def _open(self):

        s = self.fp.read(1)

        if ord(s[0]) != 255:
            raise SyntaxError("not a JPEG file")

        # Create attributes
        self.bits = self.layers = 0

        # JPEG specifics (internal)
        self.layer = []
        self.huffman_dc = {}
        self.huffman_ac = {}
        self.quantization = {}
        self.app = {} # compatibility
        self.applist = []

        while 1:

            s = s + self.fp.read(1)

            i = i16(s)

            if MARKER.has_key(i):
                name, description, handler = MARKER[i]
                # print hex(i), name, description
                if handler is not None:
                    handler(self, i)
                if i == 0xFFDA: # start of scan
                    rawmode = self.mode
                    # patch by Kevin Cazabon to comment this out - nobody 
should be using Photoshop 2.5 any more (and it breaks newer versions)
                    # CMYK images are still inverted, we'll fix that just 
before returning.
                    #if self.mode == "CMYK" and self.info.has_key("adobe"):
                    #    rawmode = "CMYK;I" # Photoshop 2.5 is broken!

                    self.tile = [("jpeg", (0,0) + self.size, 0, (rawmode, ""))]
                    # self.__offset = self.fp.tell()
                    break
                s = self.fp.read(1)
            elif i == 0 or i == 65535:
                # padded marker or junk; move on
                s = "\xff"
            else:
                raise SyntaxError("no marker found")

        # patch by Kevin Cazabon to re-invert CMYK JPEG files
        if self.mode == "CMYK":
            self.im = ImageChops.invert(self).im

    def draft(self, mode, size):

        if len(self.tile) != 1:
            return

        d, e, o, a = self.tile[0]
        scale = 0

        if a[0] == "RGB" and mode in ["L", "YCbCr"]:
            self.mode = mode
            a = mode, ""

        if size:
            scale = max(self.size[0] / size[0], self.size[1] / size[1])
            for s in [8, 4, 2, 1]:
                if scale >= s:
                    break
            e = e[0], e[1], (e[2]-e[0]+s-1)/s+e[0], (e[3]-e[1]+s-1)/s+e[1]
            self.size = ((self.size[0]+s-1)/s, (self.size[1]+s-1)/s)
            scale = s

        self.tile = [(d, e, o, a)]
        self.decoderconfig = (scale, 1)

        return self

    def load_djpeg(self):

        # ALTERNATIVE: handle JPEGs via the IJG command line utilities

        import tempfile, os
        file = tempfile.mktemp()
        os.system("djpeg %s >%s" % (self.filename, file))

        try:
            self.im = Image.core.open_ppm(file)
        finally:
            try: os.unlink(file)
            except: pass

        self.mode = self.im.mode
        self.size = self.im.size

        self.tile = []

    def _getexif(self):
        # Extract EXIF information.  This method is highly experimental,
        # and is likely to be replaced with something better in a future
        # version.
        import TiffImagePlugin, StringIO
        def fixup(value):
            if len(value) == 1:
                return value[0]
            return value
        # The EXIF record consists of a TIFF file embedded in a JPEG
        # application marker (!).
        try:
            data = self.info["exif"]
        except KeyError:
            return None
        file = StringIO.StringIO(data[6:])
        head = file.read(8)
        exif = {}
        # process dictionary
        info = TiffImagePlugin.ImageFileDirectory(head)
        info.load(file)
        for key, value in info.items():
            exif[key] = fixup(value)
        # get exif extension
        file.seek(exif[0x8769])
        info = TiffImagePlugin.ImageFileDirectory(head)
        info.load(file)
        for key, value in info.items():
            exif[key] = fixup(value)
        # get gpsinfo extension
        try:
            file.seek(exif[0x8825])
        except KeyError:
            pass
        else:
            info = TiffImagePlugin.ImageFileDirectory(head)
            info.load(file)
            exif[0x8825] = gps = {}
            for key, value in info.items():
                gps[key] = fixup(value)
        return exif

# --------------------------------------------------------------------
# stuff to save JPEG files

RAWMODE = {
    "1": "L",
    "L": "L",
    "RGB": "RGB",
    "RGBA": "RGB",
    "RGBX": "RGB",
    "CMYK": "CMYK",
    "YCbCr": "YCbCr",
}

def _save(im, fp, filename):

    try:
        rawmode = RAWMODE[im.mode]
    except KeyError:
        raise IOError("cannot write mode %s as JPEG" % im.mode)

    info = im.encoderinfo

    dpi = info.get("dpi", (0, 0))

    # get keyword arguments
    im.encoderconfig = (
        info.get("quality", 0),
        # "progressive" is the official name, but older documentation
        # says "progression"
        # FIXME: issue a warning if the wrong form is used (post-1.1.5)
        info.has_key("progressive") or info.has_key("progression"),
        info.get("smooth", 0),
        info.has_key("optimize"),
        info.get("streamtype", 0),
        dpi[0], dpi[1]
        )

    if im.mode == "CMYK":
        # invert it so it's handled correctly in Photoshop/etc. - Kevin Cazabon.
        im = ImageChops.invert(im)

    ImageFile._save(im, fp, [("jpeg", (0,0)+im.size, 0, rawmode)])

def _save_cjpeg(im, fp, filename):
    # ALTERNATIVE: handle JPEGs via the IJG command line utilities.
    import os
    file = im._dump()
    os.system("cjpeg %s >%s" % (file, filename))
    try: os.unlink(file)
    except: pass

# -------------------------------------------------------------------q-
# Registry stuff

Image.register_open("JPEG", JpegImageFile, _accept)
Image.register_save("JPEG", _save)

Image.register_extension("JPEG", ".jfif")
Image.register_extension("JPEG", ".jpe")
Image.register_extension("JPEG", ".jpg")
Image.register_extension("JPEG", ".jpeg")

Image.register_mime("JPEG", "image/jpeg")
_______________________________________________
Image-SIG maillist  -  Image-SIG@python.org
http://mail.python.org/mailman/listinfo/image-sig

Reply via email to