Here's some code that does the trick. It returns a tuple: (coefficient, (luminance_coefficient,luminance_error), (chrominance_coefficient,chrominance_error))
Note: - The 2nd and 3rd returned items are only useful if you're interested in the error (sometimes the error is 0 if the program used a JPEG table that is the same as the one used by PIL). - Fredrik: You can freely use the code and embed it in PIL if you're satisfied with its quality Code: def get_jpeg_quantization_tables(f): """Returns the JPEG quantization tables of a filename or file descriptor""" from functools import partial import Image import numpy as N fd = Image.open(f) if fd.format == 'BMP': return N.ones((8,8)),N.ones((8,8)) q = fd.quantization ql,qc = map(partial(N.array,dtype='uint8'),(q.get(0,N.zeros(64)),q.get(1,N.zeros(64)))) # Now reorder the JPEG quantification coefficients as 8x8 matrices jpeg_natural_order = N.array([ 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63]) rql = N.zeros(64,'f') rqc = N.zeros(64,'f') for x,y in N.ndenumerate(jpeg_natural_order): rql[y] = ql[x] rqc[y] = qc[x] return rql.reshape(8,8),rqc.reshape(8,8) # Luminance/Chrominance def guess_jpeg_quality(f,ctables=[]): from StringIO import StringIO import numpy as N import Image # Compute the tables for quality = 1..100 by saving fakes files in memory if not ctables: tables = N.zeros((100,2,8,8),'f') for x in xrange(100): fd = StringIO() Image.new('RGB',(64,64)).save(fd,"jpeg",quality=1+x) fd.seek(0) ql,qc = get_jpeg_quantization_tables(fd) tables[x][0] = ql tables[x][1] = qc ctables.append(tables) else: tables = ctables[0] # Use a weighting matrix w to put more emphasis on the comparison of lower DCT harmonics w = 1./N.outer(1+N.arange(8)/7.,1+N.arange(8)/7.) ql,qc = get_jpeg_quantization_tables(f) # Compute errors on Luminance and Chrominance tables errsl,errsc = [],[] for x in xrange(100): errsl.append((N.square((ql-tables[x][0])*w).mean(),x)) errsc.append((N.square((qc-tables[x][1])*w).mean(),x)) # Select minimal error coefficients lmin = min(errsl) cmin = min(errsc) # Weight coefficients average (more emphasis put on luminance since it affects most visual perception) q = int(round(lmin[1]*.8 + cmin[1]*.2)) return q,lmin,cmin ________________________________ From: Fredrik Lundh <fred...@pythonware.com> To: qiaohl <qia...@ucweb.com> Cc: image-sig <image-sig@python.org> Sent: Monday, September 28, 2009 5:43:00 AM Subject: Re: [Image-SIG] How to get quality of picture The quality setting is used to create a quantization table which is then used by the compression algorithm. There's no pre-defined mapping between quality and the contents of the quantization table for JPEG (different implementations do different things), but some applications attempt to guess by comparing the quantization tables in the file with known mapping algorithms. I'm not aware of any such code for Python. If you want to tinker with this, you can access the quantization table of an opened JPEG file via the "quantization" attribute. </F> On Mon, Sep 28, 2009 at 9:08 AM, qiaohl <qia...@ucweb.com> wrote: > Hi,all > Is there any function in PIL to get the value of JPEG quality(1-100)? I > know there are functions to set this value, But I found no function to get > this value of an existing JPEG file. > > Thanks! > > > 2009-09-28 > ________________________________ > qiaohl > _______________________________________________ > Image-SIG maillist - Image-SIG@python.org > http://mail.python.org/mailman/listinfo/image-sig > > _______________________________________________ Image-SIG maillist - Image-SIG@python.org http://mail.python.org/mailman/listinfo/image-sig
_______________________________________________ Image-SIG maillist - Image-SIG@python.org http://mail.python.org/mailman/listinfo/image-sig