I have tried to reproduce the example on page 176 of Schafer's book.
I have used both Joe  Schafer's "norm" package and my own code that follows 
the psuedocode given on page 168.

The results are below. Both these agree but neither agree with Table 5.1 b
which  quotes esimates that converge much faster than the former.

I would be interested in hearing from anyone who has looked at this.

Cheers

Ross Darnell

My version of the psuedocode (in R) gives
 
         t       mu_3    sigma_3         rho_13          rho_23 
        -----------------------------------------------------------
           0 200.000     50.0000         0.000000        0.000000 
           1 214.571     45.8580         0.280948        0.411372 
           2 219.173     43.8167         0.372608        0.609371 
           3 220.892     43.4985         0.398496        0.691951 
           4 221.618     43.6750         0.404261        0.723726 
           5 221.946     43.8818         0.404878        0.735815 
           6 222.100     44.0216         0.404501        0.740493 
           7 222.172     44.1014         0.404109        0.742351 
           8 222.206     44.1433         0.403854        0.743110 
           9 222.223     44.1644         0.403711        0.743428 
          10 222.230     44.1747         0.403636        0.743564 
          11 222.234     44.1796         0.403598        0.743623 
          12 222.236     44.1820         0.403580        0.743649 
          13 222.236     44.1831         0.403571        0.743661 
          14 222.237     44.1836         0.403566        0.743667 
          15 222.237     44.1839         0.403564        0.743669 
          16 222.237     44.1840         0.403563        0.743670 
          17 222.237     44.1840         0.403563        0.743671 

        -----------------------------------------------------------


Schafers norm code gives this

         t       mu_3    sigma_3         rho_13          rho_23 
        -----------------------------------------------------------
           0 200.000     50.0000         0.000000        0.000000 
           1 214.571     45.8580         0.280948        0.411372 
           2 219.173     43.8167         0.372608        0.609371 
           3 220.892     43.4985         0.398496        0.691951 
           4 221.618     43.6750         0.404261        0.723726 
           5 221.946     43.8818         0.404878        0.735815 
           6 222.100     44.0216         0.404501        0.740493 
           7 222.172     44.1014         0.404109        0.742351 
           8 222.206     44.1433         0.403854        0.743110 
           9 222.223     44.1644         0.403711        0.743428 
          10 222.230     44.1747         0.403636        0.743564 
          11 222.234     44.1796         0.403598        0.743623 
          12 222.236     44.1820         0.403580        0.743649 
          13 222.236     44.1831         0.403571        0.743661 
          14 222.236     44.1831         0.403571        0.743661 
          15 222.236     44.1831         0.403571        0.743661 
          16 222.236     44.1831         0.403571        0.743661 

        ------------------------------------------------------------

Reply via email to