[ 
https://issues.apache.org/jira/browse/ARROW-1956?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16306461#comment-16306461
 ] 

Wes McKinney commented on ARROW-1956:
-------------------------------------

If someone could propose a desired API for pyarrow, then a patch for this could 
be written

> Support reading specific partitions from a partitioned parquet dataset
> ----------------------------------------------------------------------
>
>                 Key: ARROW-1956
>                 URL: https://issues.apache.org/jira/browse/ARROW-1956
>             Project: Apache Arrow
>          Issue Type: Improvement
>          Components: Format
>    Affects Versions: 0.8.0
>         Environment: Kernel: 4.14.8-300.fc27.x86_64
> Python: 3.6.3
>            Reporter: Suvayu Ali
>            Priority: Minor
>              Labels: parquet
>             Fix For: 0.9.0
>
>         Attachments: so-example.py
>
>
> I want to read specific partitions from a partitioned parquet dataset.  This 
> is very useful in case of large datasets.  I have attached a small script 
> that creates a dataset and shows what is expected when reading (quoting 
> salient points below).
> # There is no way to read specific partitions in Pandas
> # In pyarrow I tried to achieve the goal by providing a list of 
> files/directories to ParquetDataset, but it didn't work: 
> # In PySpark it works if I simply do:
> {code:none}
> spark.read.options('basePath', 'datadir').parquet(*list_of_partitions)
> {code}
> I also couldn't find a way to easily write partitioned parquet files.  In the 
> end I did it by hand by creating the directory hierarchies, and writing the 
> individual files myself (similar to the implementation in the attached 
> script).  Again, in PySpark I can do 
> {code:none}
> df.write.partitionBy(*list_of_partitions).parquet(output)
> {code}
> to achieve that.



--
This message was sent by Atlassian JIRA
(v6.4.14#64029)

Reply via email to