[ 
https://issues.apache.org/jira/browse/ARROW-1780?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16416392#comment-16416392
 ] 

ASF GitHub Bot commented on ARROW-1780:
---------------------------------------

laurentgo commented on a change in pull request #1759: ARROW-1780 - [WIP] JDBC 
Adapter to convert Relational Data objects to Arrow Data Format Vector Objects
URL: https://github.com/apache/arrow/pull/1759#discussion_r177589405
 
 

 ##########
 File path: 
java/adapter/jdbc/src/main/java/org/apache/arrow/adapter/jdbc/JdbcToArrowUtils.java
 ##########
 @@ -0,0 +1,343 @@
+/**
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.arrow.adapter.jdbc;
+
+import org.apache.arrow.vector.*;
+import org.apache.arrow.vector.types.DateUnit;
+import org.apache.arrow.vector.types.TimeUnit;
+import org.apache.arrow.vector.types.pojo.ArrowType;
+import org.apache.arrow.vector.types.pojo.Field;
+import org.apache.arrow.vector.types.pojo.FieldType;
+import org.apache.arrow.vector.types.pojo.Schema;
+
+import java.nio.charset.Charset;
+import java.sql.*;
+import java.util.ArrayList;
+import java.util.List;
+
+import static org.apache.arrow.vector.types.FloatingPointPrecision.DOUBLE;
+import static org.apache.arrow.vector.types.FloatingPointPrecision.SINGLE;
+
+
+/**
+ * Class that does most of the work to convert JDBC ResultSet data into Arrow 
columnar format Vector objects.
+ *
+ * @since 0.10.0
+ */
+public class JdbcToArrowUtils {
+
+    private static final int DEFAULT_BUFFER_SIZE = 256;
+
+    /**
+     * Create Arrow {@link Schema} object for the given JDBC {@link 
ResultSetMetaData}.
+     *
+     * This method currently performs following type mapping for JDBC SQL data 
types to corresponding Arrow data types.
+     *
+     * CHAR    --> ArrowType.Utf8
+     * NCHAR   --> ArrowType.Utf8
+     * VARCHAR --> ArrowType.Utf8
+     * NVARCHAR --> ArrowType.Utf8
+     * LONGVARCHAR --> ArrowType.Utf8
+     * LONGNVARCHAR --> ArrowType.Utf8
+     * NUMERIC --> ArrowType.Decimal(precision, scale)
+     * DECIMAL --> ArrowType.Decimal(precision, scale)
+     * BIT --> ArrowType.Bool
+     * TINYINT --> ArrowType.Int(8, signed)
+     * SMALLINT --> ArrowType.Int(16, signed)
+     * INTEGER --> ArrowType.Int(32, signed)
+     * BIGINT --> ArrowType.Int(64, signed)
+     * REAL --> ArrowType.FloatingPoint(FloatingPointPrecision.SINGLE)
+     * FLOAT --> ArrowType.FloatingPoint(FloatingPointPrecision.SINGLE)
+     * DOUBLE --> ArrowType.FloatingPoint(FloatingPointPrecision.DOUBLE)
+     * BINARY --> ArrowType.Binary
+     * VARBINARY --> ArrowType.Binary
+     * LONGVARBINARY --> ArrowType.Binary
+     * DATE --> ArrowType.Date(DateUnit.MILLISECOND)
+     * TIME --> ArrowType.Time(TimeUnit.MILLISECOND, 32)
+     * TIMESTAMP --> ArrowType.Timestamp(TimeUnit.MILLISECOND, timezone=null)
+     * CLOB --> ArrowType.Utf8
+     * BLOB --> ArrowType.Binary
+     *
+     * @param rsmd
+     * @return {@link Schema}
+     * @throws SQLException
+     */
+    public static Schema jdbcToArrowSchema(ResultSetMetaData rsmd) throws 
SQLException {
+
+        assert rsmd != null;
+
+//        ImmutableList.Builder<Field> fields = ImmutableList.builder();
+        List<Field> fields = new ArrayList<>();
+        int columnCount = rsmd.getColumnCount();
+        for (int i = 1; i <= columnCount; i++) {
+            String columnName = rsmd.getColumnName(i);
+            switch (rsmd.getColumnType(i)) {
+                case Types.BOOLEAN:
+                case Types.BIT:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Bool()), null));
+                    break;
+                case Types.TINYINT:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Int(8, true)), null));
+                    break;
+                case Types.SMALLINT:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Int(16, true)), null));
+                    break;
+                case Types.INTEGER:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Int(32, true)), null));
+                    break;
+                case Types.BIGINT:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Int(64, true)), null));
+                    break;
+                case Types.NUMERIC:
+                case Types.DECIMAL:
+                    int precision = rsmd.getPrecision(i);
+                    int scale = rsmd.getScale(i);
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Decimal(precision, scale)), null));
+                    break;
+                case Types.REAL:
+                case Types.FLOAT:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.FloatingPoint(SINGLE)), null));
+                    break;
+                case Types.DOUBLE:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.FloatingPoint(DOUBLE)), null));
+                    break;
+                case Types.CHAR:
+                case Types.NCHAR:
+                case Types.VARCHAR:
+                case Types.NVARCHAR:
+                case Types.LONGVARCHAR:
+                case Types.LONGNVARCHAR:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Utf8()), null));
+                    break;
+                case Types.DATE:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Date(DateUnit.MILLISECOND)), null));
+                    break;
+                case Types.TIME:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Time(TimeUnit.MILLISECOND, 32)), null));
+                    break;
+                case Types.TIMESTAMP:
+                    // timezone is null
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Timestamp(TimeUnit.MILLISECOND, null)), null));
+                    break;
+                case Types.BINARY:
+                case Types.VARBINARY:
+                case Types.LONGVARBINARY:
+                    fields.add(new Field(columnName, FieldType.nullable(new 
ArrowType.Binary()), null));
+                    break;
+                case Types.ARRAY:
+                    // not handled
+//                    fields.add(new Field("list", FieldType.nullable(new 
ArrowType.List()), null));
 
 Review comment:
   field is ignored, so doesn't that mess up with the resulting schema? (number 
of fields different between JDBC and Arrow)?

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


> JDBC Adapter for Apache Arrow
> -----------------------------
>
>                 Key: ARROW-1780
>                 URL: https://issues.apache.org/jira/browse/ARROW-1780
>             Project: Apache Arrow
>          Issue Type: New Feature
>            Reporter: Atul Dambalkar
>            Assignee: Atul Dambalkar
>            Priority: Major
>              Labels: pull-request-available
>             Fix For: 0.10.0
>
>
> At a high level the JDBC Adapter will allow upstream apps to query RDBMS data 
> over JDBC and get the JDBC objects converted to Arrow objects/structures. The 
> upstream utility can then work with Arrow objects/structures with usual 
> performance benefits. The utility will be very much similar to C++ 
> implementation of "Convert a vector of row-wise data into an Arrow table" as 
> described here - 
> https://arrow.apache.org/docs/cpp/md_tutorials_row_wise_conversion.html
> The utility will read data from RDBMS and covert the data into Arrow 
> objects/structures. So from that perspective this will Read data from RDBMS, 
> If the utility can push Arrow objects to RDBMS is something need to be 
> discussed and will be out of scope for this utility for now. 



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)

Reply via email to