Hossein Falaki created ARROW-4723:
-------------------------------------
Summary: Skip _files when reading a directory containing parquet
files
Key: ARROW-4723
URL: https://issues.apache.org/jira/browse/ARROW-4723
Project: Apache Arrow
Issue Type: Bug
Components: Python
Reporter: Hossein Falaki
It is common for Apache Spark or other big data platforms to save additional
meta-data files denoted with _ when saving parquet data.
When using {{make_batch_reader}} to load a directory saved by parquet
containing such files we encounter the following error:
{code:java}
PetastormMetadataError Traceback (most recent call last)
/databricks/python/lib/python3.6/site-packages/petastorm/etl/dataset_metadata.py
in infer_or_load_unischema(dataset)
388 try:
--> 389 return get_schema(dataset)
390 except PetastormMetadataError:
/databricks/python/lib/python3.6/site-packages/petastorm/etl/dataset_metadata.py
in get_schema(dataset)
342 raise PetastormMetadataError(
--> 343 'Could not find _common_metadata file. Use materialize_dataset(..) in'
344 ' petastorm.etl.dataset_metadata.py to generate this file in your ETL
code.'
PetastormMetadataError: Could not find _common_metadata file. Use
materialize_dataset(..) in petastorm.etl.dataset_metadata.py to generate this
file in your ETL code. You can generate it on an existing dataset using
petastorm-generate-metadata.py{code}
This is because our Runtime stores the following two files at the end of the
job:
{code:java}
dbfs:/tmp/petastorm/_committed_4686077819843716563
_committed_4686077819843716563 1965
dbfs:/tmp/petastorm/_started_4686077819843716563{code}
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)