[
https://issues.apache.org/jira/browse/ARROW-4723?page=com.atlassian.jira.plugin.system.issuetabpanels:all-tabpanel
]
Joris Van den Bossche updated ARROW-4723:
-----------------------------------------
Labels: parquet (was: )
> Skip _files when reading a directory containing parquet files
> -------------------------------------------------------------
>
> Key: ARROW-4723
> URL: https://issues.apache.org/jira/browse/ARROW-4723
> Project: Apache Arrow
> Issue Type: Bug
> Components: Python
> Reporter: Hossein Falaki
> Priority: Major
> Labels: parquet
>
> It is common for Apache Spark or other big data platforms to save additional
> meta-data files denoted with _ when saving parquet data.
> When using {{make_batch_reader}} to load a directory saved by parquet
> containing such files we encounter the following error:
> {code:java}
> PetastormMetadataError Traceback (most recent call last)
> /databricks/python/lib/python3.6/site-packages/petastorm/etl/dataset_metadata.py
> in infer_or_load_unischema(dataset)
> 388 try:
> --> 389 return get_schema(dataset)
> 390 except PetastormMetadataError:
> /databricks/python/lib/python3.6/site-packages/petastorm/etl/dataset_metadata.py
> in get_schema(dataset)
> 342 raise PetastormMetadataError(
> --> 343 'Could not find _common_metadata file. Use materialize_dataset(..)
> in'
> 344 ' petastorm.etl.dataset_metadata.py to generate this file in your ETL
> code.'
> PetastormMetadataError: Could not find _common_metadata file. Use
> materialize_dataset(..) in petastorm.etl.dataset_metadata.py to generate this
> file in your ETL code. You can generate it on an existing dataset using
> petastorm-generate-metadata.py{code}
>
> This is because our Runtime stores the following two files at the end of the
> job:
> {code:java}
> dbfs:/tmp/petastorm/_committed_4686077819843716563
> _committed_4686077819843716563 1965
> dbfs:/tmp/petastorm/_started_4686077819843716563{code}
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)