Mauro Riva created BEAM-11993:
---------------------------------
Summary: ReadFromKafka doesn’t send data to the next PTransform –
Apache Flink "Cluster" – Apache Beam Python SDK
Key: BEAM-11993
URL: https://issues.apache.org/jira/browse/BEAM-11993
Project: Beam
Issue Type: Bug
Components: beam-model, cross-language, io-py-kafka, runner-flink
Affects Versions: 2.28.0, 2.27.0, 2.26.0
Reporter: Mauro Riva
I am trying to build a streaming pipeline using Python. The pipeline should
subscribe to a Kafka topic and process the data on the fly. I am using the
following configuration:
{code:java}
class PrintFn(beam.DoFn):
def __init__(self, label):
self.label = label
def process(self, element, timestamp=beam.DoFn.TimestampParam,
window=beam.DoFn.WindowParam):
logging.info("[%s]: %s %s %s", self.label, element, window, timestamp)
yield element
[...]
pipeline_args = [
"--job_endpoint=localhost:8099",
"--runner=PortableRunner" ,
"--environment_type=DOCKER",
"--environment_config=gcr.io/xxxx/beam_python3.7_sdk:v2.28.0-custom",
"--enable_streaming_engine"
]
pipeline_options = PipelineOptions(pipeline_args, save_main_session=True,
streaming=True)
DataPipeline = beam.Pipeline(options=pipeline_options)
ReadData = (
DataPipeline
| "ReadFromKafka"
>> ReadFromKafka(
consumer_config={
"bootstrap.servers": "10.0.1.40:9092",
"auto.offset.reset":"latest"
},
topics="beam_topic",
expansion_service="localhost:8097"
)
| "Debug"
>> beam.ParDo(PrintFn(label="test"))
)
{code}
and a Flink configuration with Job and Task managers. The pipeline is loaded,
but as soon as it starts running, the task:
{code:java}
Source: Impulse ->
[3]ReadFromKafka/KafkaIO.Read/Read(KafkaUnboundedSource)/{ParDo(OutputSingleSource),
ParDo(UnboundedSourceAsSDFWrapper)}
{code}
changes its status from RUNNING to FINISHED. The Kafka consumer remains
subscribed and reports the following:
{code:java}
2021-03-16 16:10:54,628 INFO
org.apache.kafka.clients.consumer.internals.SubscriptionState [] - [Consumer
clientId=consumer-Reader-0_offset_consumer_538555605_none-3,
groupId=Reader-0_offset_consumer_538555605_none] Seeking to LATEST offset of
partition topic_beam-0
2021-03-16 16:10:54,629 INFO
org.apache.kafka.clients.consumer.internals.SubscriptionState [] - [Consumer
clientId=consumer-Reader-0_offset_consumer_538555605_none-3,
groupId=Reader-0_offset_consumer_538555605_none] Resetting offset for partition
topic_beam-0 to offset 144.
2021-03-16 16:10:55,628 INFO
org.apache.kafka.clients.consumer.internals.SubscriptionState [] - [Consumer
clientId=consumer-Reader-0_offset_consumer_538555605_none-3,
groupId=Reader-0_offset_consumer_538555605_none] Seeking to LATEST offset of
partition topic_beam-0
2021-03-16 16:10:55,629 INFO
org.apache.kafka.clients.consumer.internals.SubscriptionState [] - [Consumer
clientId=consumer-Reader-0_offset_consumer_538555605_none-3,
groupId=Reader-0_offset_consumer_538555605_none] Resetting offset for partition
topic_beam-0 to offset 145.{code}
But it doesn’t send any data to the next task:
{code:java}
[3]ReadFromKafka/{KafkaIO.Read, Remove Kafka Metadata} -> [1]Debug
{code}
which remains in RUNNING mode.
Changing the configuration to:
{code:java}
| "ReadFromKafka"
>> ReadFromKafka(
consumer_config={
"bootstrap.servers": "10.0.1.40:9092",
"auto.offset.reset":"earliest"
},
topics="beam_topic",
max_num_records=10,
expansion_service="localhost:8097"
)
| "Debug"
>> beam.ParDo(PrintFn(label="test"))
)
{code}
seems to work but only for the X (in the code = {color:#FF0000}10{color})
records that should be already available in the broker, and I get the info
logging as expected:
{code:java}
2021-03-16 15:55:11,665 INFO apachebeam_pipeline.py:164 [] - [test]: (b'beam',
b'{"type":"Buffer","data":[0,0,0,0,1,28,102]}') GlobalWindow
Timestamp(1615910111.418000)
2021-03-16 15:55:11,665 INFO apachebeam_pipeline.py:164 [] - [test]: (b'beam',
b'{"type":"Buffer","data":[0,0,0,0,1,28,102]}') GlobalWindow
Timestamp(1615910111.418000)
{code}
After reading those messages, the complete pipeline (both mentioned tasks)
changes its status to FINISHED (as expected).
--
This message was sent by Atlassian Jira
(v8.3.4#803005)