Johan Sternby created BEAM-12434:
------------------------------------

             Summary: implement num_shard side_input to WriteToTFRecord
                 Key: BEAM-12434
                 URL: https://issues.apache.org/jira/browse/BEAM-12434
             Project: Beam
          Issue Type: Improvement
          Components: io-py-tfrecord
    Affects Versions: 2.29.0, 3.0.0, 2.30.0, 2.31.0, 2.32.0
            Reporter: Johan Sternby


{{As concisely explained in 
[https://stackoverflow.com/questions/49156159/can-i-pass-side-inputs-to-apache-beam-ptransforms|http://example.com/]
 }}
EXAMPLES_PER_SHARD = 5.0
num_tfexamples = tfexample_strs | "count tf examples" >> 
beam.combiners.Count.Globally()
num_shards = num_tfexamples | ("compute number of shards" >>
                               beam.Map(lambda num_examples: 
int(math.ceil(num_examples / EXAMPLES_PER_SHARD))))
_ = tfexample_strs | ("output to tfrecords" >>
                      beam.io.WriteToTFRecord(OUTPUT_DIR, 
num_shards=beam.pvalue.AsSingleton(num_shards)))
fails with
File "/usr/local/lib/python3.7/dist-packages/apache_beam/io/iobase.py", line 
1011, in start_bundle
    self.counter = random.randint(0, self.count - 1)
TypeError: unsupported operand type(s) for -: 'AsSingleton' and 'int' [while 
running 'output VALIDATION to 
tfrecords/Write/WriteImpl/ParDo(_RoundRobinKeyFn)']
WriteToTFRecords op in the python SDK of apache-beam does currently not support 
side_input to num_shards.



It can easily be solved by implementing the _RoundRobinKeyFn a bit differently 
and calling the ParDo with side_input instead of class init values. 



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to