[
https://issues.apache.org/jira/browse/BEAM-12169?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=17361295#comment-17361295
]
Brian Hulette commented on BEAM-12169:
--------------------------------------
Are there dtypes other than categorical and boolean with low cardinality?
> DataFrame API: Allow non-deferred column operations on categorical columns
> --------------------------------------------------------------------------
>
> Key: BEAM-12169
> URL: https://issues.apache.org/jira/browse/BEAM-12169
> Project: Beam
> Issue Type: Improvement
> Components: sdk-py-core
> Reporter: Brian Hulette
> Priority: P2
> Labels: dataframe-api
>
> There are several operations that we currently disallow because they produce
> a variable set of columns in the output based on the data
> (non-deferred-columns). However, for some dtypes (categorical, boolean) we
> can easily enumerate all the possible values that will be seen at execution
> time, so we can predict the columns that will be seen.
> We should allow these operations in these special cases.
> Operations in this category:
> - DataFrame.unstack (can work if unstacked level is a categorical or boolean
> column)
> - Series.str.get_dummies
> - Series.str.split
> - Series.str.rsplit
> - DataFrame.pivot
> - DataFrame.pivot_table
> - len(GroupBy) (if groupers are all categorical _and_ observed=False or all
> boolean)
--
This message was sent by Atlassian Jira
(v8.3.4#803005)