[ 
https://issues.apache.org/jira/browse/BEAM-12495?focusedWorklogId=611578&page=com.atlassian.jira.plugin.system.issuetabpanels:worklog-tabpanel#worklog-611578
 ]

ASF GitHub Bot logged work on BEAM-12495:
-----------------------------------------

                Author: ASF GitHub Bot
            Created on: 15/Jun/21 20:33
            Start Date: 15/Jun/21 20:33
    Worklog Time Spent: 10m 
      Work Description: TheNeuralBit commented on pull request #15019:
URL: https://github.com/apache/beam/pull/15019#issuecomment-861812465


   R: @robertwb 


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]


Issue Time Tracking
-------------------

    Worklog Id:     (was: 611578)
    Time Spent: 20m  (was: 10m)

> DataFrame API: groupby(dropna=False) still drops NAs when grouping on 
> multiple columns or indexes
> -------------------------------------------------------------------------------------------------
>
>                 Key: BEAM-12495
>                 URL: https://issues.apache.org/jira/browse/BEAM-12495
>             Project: Beam
>          Issue Type: Bug
>          Components: sdk-py-core
>            Reporter: Brian Hulette
>            Priority: P2
>              Labels: dataframe-api
>          Time Spent: 20m
>  Remaining Estimate: 0h
>
> {code}
> df.groupby(['foo', 'bar'], dropna=False).sum()
> {code}
> This will still drop NAs in the output.
> This is due to pandas bug 
> [36470|https://github.com/pandas-dev/pandas/issues/36470] "BUG: groupby(..., 
> dropna=False) excludes NA values when grouping on MultiIndex levels".
> We implement groupby by moving all grouped data into the index and requiring 
> Index() partitioning, so we will always run into this issue, even when the 
> user is grouping on columns, not indexes.



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to