Nikos Karavasilis created BEAM-12557:
----------------------------------------

             Summary: Beam: Kafka with Spark Runner configuration
                 Key: BEAM-12557
                 URL: https://issues.apache.org/jira/browse/BEAM-12557
             Project: Beam
          Issue Type: Bug
          Components: io-java-kafka, runner-spark
    Affects Versions: 2.30.0
            Reporter: Nikos Karavasilis


I am new to the Beam project and one task of my bachelor thesis is to do some 
benchmarking using Beam. I have created a simple "**number-count**" program by 
modifying a word-count 
example(https://dzone.com/articles/unbounded-stream-processing-using-apache-beam).

I am using a simple **kafka** **topic**(1 partition) and produce a number and a 
timestamp(event time) periodically. The problem is I run the pipeline with 
**Direct runner** and it works **fine**, but when I use **Spark** it **fails** 
without an error. Basically spark as soon as it configures the executors it 
shuts down, instead of waiting for kafka. I tested it with yarn or standalone 
but nothing.

After spending 1 week i can't figure it out. Any help is highly appreciated.

**I am sure that pom.xml might be missing something**

```
Beam: 2.30.0
Spark: 2.4.7
Kafka: 2.4.1
Hadoop: 2.7.7
Java: 8 (1.8.0_291)
OS: Ubuntu 18.04 Lts
```

The pipeline:
```
Pipeline pipeline = Pipeline.create(options);
 Duration WINDOW_TIME = Duration.standardSeconds(5);
 Duration ALLOWED_LATENESS = Duration.standardSeconds(5);

CoderRegistry cr = pipeline.getCoderRegistry();
 cr.registerCoderForClass(Record.class, new RecordSerializableCoder());


 pipeline.apply(
 KafkaIO.<Long, Record>read()
 .withBootstrapServers(options.getBootstrap())
 .withTopic(options.getInputTopic())
 .withKeyDeserializer(LongDeserializer.class)
 .withValueDeserializer(RecordDeserializer.class)
 .withTimestampPolicyFactory((tp, previousWaterMark) -> new 
CustomFieldTimePolicy(previousWaterMark))
 .withConsumerConfigUpdates(ImmutableMap.of("group.id", "test.group"))
 .withoutMetadata()
 )
 .apply(Values.<Record>create())
 .apply("append event time for PCollection records", WithTimestamps.of((Record 
rec) -> new Instant(rec.getTimestamp())))
 .apply("extract number", MapElements
 .into(TypeDescriptors.longs())
 .via(Record::getNumber))
 .apply("apply window", Window.<Long>into(FixedWindows.of(WINDOW_TIME))
 .withAllowedLateness(ALLOWED_LATENESS)
 .triggering(Repeatedly.forever(AfterWatermark.pastEndOfWindow()))
 .accumulatingFiredPanes()
 )
 .apply("count numbers", new CountNumbers())
 .apply("format result to String",MapElements
 .into(TypeDescriptors.strings())
 .via((KV<Long, Long> rec) -> rec.getKey() + ":" + rec.getValue()))
 .apply("Write it to a text file", new 
WriteOneFilePerWindow(options.getOutput()));
 
 pipeline.run();
```

**pom.xml**
```
// Spark profile and general dependencies

<profile>
 <id>spark-runner</id>
 <properties>
 <netty.version>4.1.17.Final</netty.version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.apache.beam</groupId>
 <artifactId>beam-runners-spark</artifactId>
 <version>${beam.version}</version>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.11</artifactId>
 <version>${spark.version}</version>
 <!--<scope>runtime</scope>-->
 </dependency>
 <dependency>
 <groupId>org.apache.beam</groupId>
 <artifactId>beam-sdks-java-io-hadoop-file-system</artifactId>
 <version>${beam.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-sql_2.11</artifactId>
 <version>${spark.version}</version>
 <!--<scope>runtime</scope>-->
 </dependency>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-catalyst_2.11</artifactId>
 <version>${spark.version}</version>
 <!--<scope>runtime</scope>-->
 </dependency>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming_2.11</artifactId>
 <version>${spark.version}</version>
 <!-- <scope>runtime</scope> -->
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>jul-to-slf4j</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

<dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-core</artifactId>
 <version>${jackson.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-annotations</artifactId>
 <version>${jackson.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>${jackson.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>

<dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-scala_2.11</artifactId>
 <version>${jackson.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>
 </dependencies>
 </profile>

<dependencies>
 <dependency>
 <groupId>com.fasterxml.jackson.module</groupId>
 <artifactId>jackson-module-scala_2.11</artifactId>
 <version>${jackson.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-core</artifactId>
 <version>${jackson.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-annotations</artifactId>
 <version>${jackson.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>
 <dependency>
 <groupId>com.fasterxml.jackson.core</groupId>
 <artifactId>jackson-databind</artifactId>
 <version>${jackson.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>
 <dependency>
 <groupId>org.apache.beam</groupId>
 <artifactId>beam-runners-spark</artifactId>
 <version>${beam.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>
 <dependency>
 <groupId>org.apache.beam</groupId>
 <artifactId>beam-sdks-java-io-hadoop-file-system</artifactId>
 <version>${beam.version}</version>
 <!-- <scope>runtime</scope> -->
 </dependency>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.11</artifactId>
 <version>${spark.version}</version>
 <exclusions>
 <!-- <exclusion>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 </exclusion> -->
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>jul-to-slf4j</artifactId>
 </exclusion>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-streaming_2.11</artifactId>
 <version>${spark.version}</version>
 <!-- <scope>runtime</scope> -->
 <exclusions>
 <exclusion>
 <groupId>org.slf4j</groupId>
 <artifactId>jul-to-slf4j</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-sql_2.11</artifactId>
 <version>${spark.version}</version>
 <!--<scope>runtime</scope>-->
 </dependency>
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-catalyst_2.11</artifactId>
 <version>${spark.version}</version>
 <!--<scope>runtime</scope>-->
 </dependency>

<!-- Add slf4j API frontend binding with JUL backend -->
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>${slf4j.version}</version>
 </dependency>

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>${slf4j.version}</version>
 <!-- When loaded at runtime this will wire up slf4j to the JUL backend -->
 <scope>runtime</scope>
 </dependency>

<!-- Adds a dependency on the Beam SDK. -->
 <dependency>
 <groupId>org.apache.beam</groupId>
 <artifactId>beam-sdks-java-core</artifactId>
 <version>${beam.version}</version>
 </dependency>


 <dependency>
 <groupId>joda-time</groupId>
 <artifactId>joda-time</artifactId>
 <version>${joda.version}</version>
 </dependency>


 <!-- The DirectRunner is needed for unit tests. -->
 <dependency>
 <groupId>org.apache.beam</groupId>
 <artifactId>beam-runners-direct-java</artifactId>
 <version>${beam.version}</version>
 <scope>test</scope>
 </dependency>

<dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <version>${mockito.version}</version>
 <scope>test</scope>
 </dependency>

<!-- https://mvnrepository.com/artifact/org.apache.beam/beam-sdks-java-io-kafka 
-->
 <dependency>
 <groupId>org.apache.beam</groupId>
 <artifactId>beam-sdks-java-io-kafka</artifactId>
 <version>${beam.version}</version>
 </dependency>

<!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients -->
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>${kafka.version}</version>
 </dependency>

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>${junit.version}</version>
 </dependency>

```
Submitting the pipeline to yarn: 
```
./spark-submit 
 --class com.nikarav.WindowedNumberCount 
 --master yarn 
 target/count-numbers-bundled-1.0.jar 
 --runner=SparkRunner 
 --output=counts

```
```
// yarn log


21/06/30 01:50:59 INFO yarn.YarnAllocator: Will request 2 executor 
container(s), each with 1 core(s) and 1408 MB memory (including 384 MB of 
overhead)
21/06/30 01:50:59 INFO yarn.YarnAllocator: Submitted 2 unlocalized container 
requests.
21/06/30 01:50:59 INFO yarn.ApplicationMaster: Started progress reporter thread 
with (heartbeat : 3000, initial allocation : 200) intervals
21/06/30 01:50:59 INFO impl.AMRMClientImpl: Received new token for : 
nikarav:42295
21/06/30 01:50:59 INFO yarn.YarnAllocator: Launching container 
container_1624916683431_0015_01_000002 on host nikarav for executor with ID 1
21/06/30 01:50:59 INFO yarn.YarnAllocator: Received 1 containers from YARN, 
launching executors on 1 of them.
21/06/30 01:50:59 INFO impl.ContainerManagementProtocolProxy: 
yarn.client.max-cached-nodemanagers-proxies : 0
21/06/30 01:50:59 INFO impl.ContainerManagementProtocolProxy: Opening proxy : 
nikarav:42295
21/06/30 01:51:01 INFO yarn.YarnAllocator: Launching container 
container_1624916683431_0015_01_000003 on host nikarav for executor with ID 2
21/06/30 01:51:01 INFO yarn.YarnAllocator: Received 1 containers from YARN, 
launching executors on 1 of them.
21/06/30 01:51:01 INFO impl.ContainerManagementProtocolProxy: 
yarn.client.max-cached-nodemanagers-proxies : 0
21/06/30 01:51:01 INFO impl.ContainerManagementProtocolProxy: Opening proxy : 
nikarav:42295
21/06/30 01:51:06 INFO yarn.YarnAllocator: Driver requested a total number of 0 
executor(s).
21/06/30 01:51:06 INFO yarn.ApplicationMaster$AMEndpoint: Driver terminated or 
disconnected! Shutting down. nikarav:43449
21/06/30 01:51:06 INFO yarn.ApplicationMaster$AMEndpoint: Driver terminated or 
disconnected! Shutting down. nikarav:43449
21/06/30 01:51:06 INFO yarn.ApplicationMaster: Final app status: SUCCEEDED, 
exitCode: 0
21/06/30 01:51:06 INFO yarn.ApplicationMaster: Unregistering ApplicationMaster 
with SUCCEEDED
21/06/30 01:51:06 INFO impl.AMRMClientImpl: Waiting for application to be 
successfully unregistered.
21/06/30 01:51:06 INFO yarn.ApplicationMaster: Deleting staging directory 
hdfs://localhost:9000/user/hadoop/.sparkStaging/application_1624916683431_0015
21/06/30 01:51:06 INFO util.ShutdownHookManager: Shutdown hook called
```
**log** file: https://pastebin.com/nhL5byvK



--
This message was sent by Atlassian Jira
(v8.3.4#803005)

Reply via email to